FFYS7086 Signal and Image Processing course

PET Modeling

13:15-14:00, 2022.05.11

Hidehiro Iida

Turku PET Centre University of Turku Faculty of Medicine Finland

Positron Emission Tomography

FFYS7086 Signal and Image Processing course

PET Modeling 13:15-14:00, 2022.05.11

Contents

-
- FFYS7086 Signal and Image Processing

PET Modeling

13:15-14:00, 2022.05.11

Contents

1. Basis of the compartment model

2. Modeling of H₂¹⁵O-based regional tissu

 Cerebral blood flow (CBF) **PET Mod**

13:15-14:00, 20
 2. Modeling of H₂¹⁵O-based reg

• Cerebral blood flow (CB

• Myocardium blood flow 2. Modeling of $H₂¹⁵O$ -based regional tissue perfusion **2. Modeling of H₂¹⁵O-based regional tissue perfusion**
 2. Modeling of H₂¹⁵O-based regional tissue perfusion

• Cerebral blood flow (CBF)

• Myocardium blood flow (MBF)
 3. General concerns and future perspecti
	- Cerebral blood flow (CBF)
	- Myocardium blood flow (MBF)
-

Exponential function

as the basis of the compartmental modeling

Arterial blood supply

as the basis of the compartmental modeling			
Arterial blood supply	K_1	$C_i(t)$	k_2
$Re\psi m l$	$Re\psi m l$	Yenous drainage	
$dC_i(t)$	K_1	Yenous drainage	
$dC_i(t)$	$= K_1 C_a(t) - k_2 C_i(t)$	-eq. (1)	
After the tracer is introduced, the radio-labeled tracer in the arterial blood is carried to tissue, and from the tissue to the venous drainage.			
These transport flux is proportional to differences in concentrations at the boundary, where the carrier rate may be assumed at constant, under some circumstances. Instantaneous equilibrium in the tissue compartment is also an important assumption.			
The time balance of the tracer concentration in the tissue compartment may be expressed as eq. (1).			

-
- After the tracer is introduced, the radio-labeled tracer in the arterial blood is carried to tissue, and from the tissue to the venous drainage.
• These transport flux is proportional to differences in concentrations at $\frac{dC_i(t)}{dt} = K_I C_i$
After the tracer is introduced, the radio-labeled t
tissue, and from the tissue to the venous drainage.
These transport flux is proportional to differences in
the carriage rate may be assumed at constan
-

Solving the compartment model

Exponential function as the basis of the compartmental modeling

$$
\frac{dC_e(t)}{dt} = K_1 C_p(t) - k_2 C_e(t) - k_3 C_e(t)
$$

$$
\frac{dC_m(t)}{dt} = k_3 C_e(t)
$$

$$
\mathbf{K}_{2} \qquad \begin{aligned}\n &\mathbf{K}_{2} \qquad \begin{aligned}\n &\mathbf{K}_{2} \qquad \begin{aligned}\n &\mathbf{K}_{2} \qquad \mathbf{K}_{2} \q
$$

Common Compartment Models

Receptor ligand

Kinetic fitting to solve the inverse problem

Optimization of parameter sets $(p_1, p_2, p_3, ...)$

ptimization of parameter sets
$$
(p_1, p_2, p_3, .)
$$

\n
$$
counts \frac{|Bq|}{|ml|} estimated using a formulae
$$
\nwith given $K_1, k_2, k_3, ..$, values
\n
$$
\chi^2 = \frac{1}{N} \cdot \sum_i \left(\frac{(Estimated data)_i^2 - (Measured data)_i^2}{(Estimated error)_i^2} \right)
$$

If the assumed model formula is adequate, and the data are acquired with suffieient accuracy, the minimal χ^2 value may reach unity.

- "The minimal χ^2 << 1" means that the parameters determined are not reliable.
- "The minimal χ^2 >> 1" suggests the need for improving the model formulation.

Numerical procedures to find the local minimum of χ^2

≥ 1 -dimensional search to find a local minimum

\triangleright Multi-parameter search

- The steepest descent method
- Conjugate gradient method
- Newton's method
- Gauss-Newton method
- Marquardt method
- Powell method, etc.
- Simplex (Nelder-Mead) method $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{Wors well!} & \text{Wors well!} \\
\hline\n\end{array}$

 \triangleright Basis Function method accelerates the optimization

Golden section method, etc (No way to find the "global" minimum!)

Combination with 1-dimensional search + updating the search direction

Modeling of 15 O-labeled water (H₂¹⁵O) kinetics for cerebral & myocardial blood flow

Diffusion equation in the capillary bed

Single-tissue compartment model

Questions and proposals

- Gradient along the capillary
- Slowly exchanging water (binding water)
- Heterogeneity of blood supply

Mathematical model for H_2 ¹⁵O to quantitatively asses regional blood flow

$$
\frac{dC_i(t)}{dt} = f \cdot C_a(t) - f \cdot C_v(t)
$$

Assuming
$$
C_v(t) = \frac{C_i(t)}{p}
$$
 $\therefore p = \frac{Water\ content\ in\ tissue}{Water\ content\ in\ blood}$
\n $\frac{dC_i(t)}{dt} = f \cdot C_a(t) - f \cdot \frac{C_i(t)}{p}$

 \mathbf{r}

Solving eq. (1) gives

$$
C_i(t) = f \cdot C_a(t) \otimes e^{-\frac{f}{p} \cdot t}
$$

Clearance of radioactivity from cerebral tissue after bolus carotid injection of ¹⁵O-water

Iida et al., JCBFM 2014, 1-6

Delay and dispersion in the observed AIF occur in the arterial lines and in the catheter tubes.

Procedures of the ¹⁵O-Water Autoradiography

Quantitation of rCBF corrected for Partial Volume Effect
using ¹⁵O-Water and PET using 15O-Water and PET

 $(\widehat{\alpha_g}(f_g) \cdot C_a(t) \otimes e^{-\frac{f_g}{p_g}} + \widehat{\alpha_w}(f_w) \cdot C_a(t) \otimes e^{-\frac{f_g}{p_g}})$ $(f_{\boldsymbol{\mathcal{W}}})$ $R(t)$

Iida H, Law I, etc, JCBFM 2000 Law et al., Iida et al. JCBFM 2000

Validation using a dynamic equilibrium phantom

Results from a dynamic equilibrium phantom experiment

Impact of Partial Volume Correction on Absolute CBF in young healthy volunteers

Comparison of the gray matter volumes

Quantitation of myocardial perfusion 15O-water as a gold standard **2uantitation of myocardial perfusion
150-water as a gold standard
1. Instantaneous equilibrium in tissue
2. Large first-pass extraction fraction
3. Chemically inert Quantitation of myocardial perfusion

150-water as a gold standard

1. Instantaneous equilibrium in tissue

2. Large first-pass extraction fraction

3. Chemically inert

• No retention Quantitation of myocardi

¹⁵0-water as a gold sta

1. Instantaneous equilibriur

2. Large first-pass extraction

3. Chemically inert

• No retention

• No metabolism**

-
-
- - •No retention
	- •No metabolism
	- •Adequate for math modeling

First-pass extraction fraction

$$
\frac{dC_i(t)}{dt} = \underbrace{\{E \cdot f\}} \cdot Ca(t) - \underbrace{\{E \cdot f\}} \cdot C_v(t)
$$

Systematic underestimation due to
Partial Volume Effect (PVE) in Myocardial PET

Iida et al, Circulation, 1988

Use of LV TAC and Spillover Correction Use of LV TAC and Spillover Correction ¹⁵O-Water Myocardial PET

> Fitting f, α and $V_{_a}$ to R(t) Spillover correction

JNM 1992; 33:1669-1677 JNM 1995; 36:78-35

Iida et al., J Nucl Med 1992; 33:1669-1677

Validation of MBF Quantification by Use of 0-15 Water **ROI Size Dependency of Estimated MBF**

lida et al Circulation 1988; 78:104-115

Analysis of PET myocardial perfusion study

Carimas TM / Turku PET Centre

Software packages for MBF quantification: **On study**
Software packages
for MBF
quantification:
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD **On study**

Software packages

for MBF

quantification:

- aQuant

- Cardiac Vuer

- Munich Heart

- PMOD

- FlowQuant **On Study**

Software packages

for MBF

quantification:

- aQuant

- Cardiac Vuer

- Munich Heart

- PMOD

- FlowQuant

- Carimas **Software packages

Software packages

for MBF

quantification:

- aQuant

- Cardiac Vuer

- Munich Heart

- PMOD

- FlowQuant

- Carimas

- Svngo** Software packages
for MBF
quantification:
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo Software packages
for MBF
quantification:
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto Software packages
for MBF
quantification:
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto
- QPET for MBF
quantification:
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto
- QPET
- UW-QPP quantification:
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto
- QPET
- UW-QPP
- ImagenQ

-
-
-
-
-
-
-
-
-
-
-
- aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto
- QPET
- UW-QPP
- ImagenQ - aQuant
- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto
- QPET
- UW-QPP
- ImagenQ
- Corridor 4DM

- Cardiac Vuer
- Munich Heart
- PMOD
- FlowQuant
- Carimas
- Syngo
- Hoquto
- QPET
- UW-QPP
- ImagenQ
- Corridor 4DM
Prof. J. Knuuti Courtesy of Prof. J. Knuuti

MBF and water-perfusable tissue (PTF)
by¹⁵O-water PET in a K9 model of OMI by15O-water PET in a K9 model of OMI

PTI as a Myocardial Viability Marker

 $PTI = C/B$ (=PTF/ATF)

Yamamoto et al, Circulation, 1992 De Silva et al, Circulation, 1993

FDG & PTF as Myocardial Viability Marker

Perfusable Tissue Index as a Potential Marker of Fibrosis in
Patients with Idiopathic Dilated Cardiomyopathy Patients with Idiopathic Dilated Cardiomyopathy

FIGURE 2. PTI for healthy control subjects and DCM patients.

Knaapen P et al., J Nucl Med. 45:1299–1304, 2004

Missing issues in this talk

-
- **Missing issues in this talk**
1. Modeling for metabolic tracers, e.g., ¹⁸F-FDG
2. Modeling for neuro-receptor ligands (reversible tracers)
and application to drug development and evaluation. **Missing issues in this talk**
2. Modeling for metabolic tracers, e.g., ¹⁸F-FDG
2. Modeling for neuro-receptor ligands (reversible tracers)
and application to drug development and evaluation.
3. Appearance of metabolized **Missing issues in this talk**
Modeling for metabolic tracers, e.g., ¹⁸F-FDG
Modeling for neuro-receptor ligands (reversible tracers)
and application to drug development and evaluation.
Appearance of metabolized molecules **Missing issues in this talk**
1. Modeling for metabolic tracers, e.g., ¹⁸F-FDG
2. Modeling for neuro-receptor ligands (reversible tracers)
and application to drug development and evaluation.
3. Appearance of metabolized **Missing issues in this talk**
1. Modeling for metabolic tracers, e.g., ¹⁸F-FDG
2. Modeling for neuro-receptor ligands (reversible tracers)
and application to drug development and evaluation.
3. Appearance of metabolized **Missing issues in this talk**
Modeling for metabolic tracers, e.g., ¹⁸F-FDG
Modeling for neuro-receptor ligands (reversible trace
and application to drug development and evaluation.
Appearance of metabolized molecules in 1. Modeling for metabolic tracers, e.
2. Modeling for neuro-receptor ligar
and application to drug developm
3. Appearance of metabolized moleo
4. Examples where the existing comp
limited or does not work.
5. etc
-
-
-

Future perspectives

Mismatch between PET and CT images in attenuation correction

⇒ A novel approach for attenuation correction is needed

Metabolites in the AIF

 \Rightarrow Total body PET to estimate the metabolites in the arterial blood

Logistical complexity that made the usage of $15O$ -oxygen inhalation PET difficult ⇒ Comprehensive automated radio-tracer production + inhalation system ⇒ Single Scan Dual Administration (SSDA) with sequential ¹⁵O₂ and H₂¹⁵O

dipyridamole scan. Legend is the same as Figure 6.

Total Body PET scanner with axial FOV of 106 cm al Body PET scanner with axial FOV of 106 cm
Biograph Vision Quadra - Siemens Healthineers
Allen Computer of Teneration of T

