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Modeling contribute:

Positron Emission Tomography

Detector+electronics technology

* Block design (high packing rate)
* Energy resolution

* Time resolution

* Increased signals

* Electronics circuit (ASIC)
* Large scale storage

104~ 105 detectors ~— 1090) LOR
Coincidence At~nsec
~200ps for time-of-flight reso.

PET system

Image reconstruction

A number of correction
* Random events
Inhomogeneity
Dead time
Photon Attenuation

Photon Scatter
Partial Volume

Practical protocol design

Kl k3
Radio-tracers development ___C_P___;g<k Cro - Cs
2 4
PET system design specifications v =
B Sl
Software specifications B .
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Exponential function
as the basis of the compartmental modeling

Arterial blood supply
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dCy(®)
dt

=K,C(t)—k, Ct) -eq.(1)

After the tracer is introduced, the radio-labeled tracer in the arterial blood is carried to
tissue, and from the tissue to the venous drainage.

These transport flux is proportional to differences in concentrations at the boundary, where
the carriage rate may be assumed at constant, under some circumstances. Instantaneous
equilibrium in the tissue compartment is also an important assumption.

The time balance of the tracer concentration in the tissue compartment may be expressed
as eq. (1).



Solving the compartment model
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Exponential function
as the basis of the compartmental modeling

Arterial supply Ci(1) [By/mi]
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Common Compartment Models

Tissue
Blood |1 Tissue Blood | Free | Metab
Blood flow tracer Glucose metabolism
Tissue Target tissue
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Kinetic fitting to solve the inverse problem

Input function Kinetic model Dynamic PET images
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Optimization of parameter sets (p1, P2, P3,,,)

B
Counts [ﬁ] estimated using a formulae
with given K, k;,, k3,,, values

/ Counts [%] measured by PET

4
2 1 Z ((Estimated data)i2 — (Measured data),-z)
X =y
i

(Estimated error);*

If the assumed model formula is adequate, and the data are acquired with suffieient
accuracy, the minimal % value may reach unity.

* “The minimal << 1” means that the parameters determined are not reliable.
* “The minimal y>>> 1" suggests the need for improving the model formulation.



Numerical procedures to find the local minimum of)(z

> 1-dimensional search to find a local minimum

ay ) _fn) ()
AL il

» Multi-parameter search

* The steepest descent method

Golden section method, etc
(No way to find the “global”

minimum!)

X Combination with 1-dimensional search
+ updating the search direction

* Conjugate gradient method
 Newton's method

* Gauss-Newton method

* Marquardt method

* Powell method, etc.

* Simplex (Nelder-Mead) method €= Works well!!
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» Basis Function method accelerates the optimization



Modeling of 1>O-labeled water (H,'>0) kinetics
for cerebral & myocardial blood flow

Capillary bed

Venules
~ Vein

7

Arteriol

Artery

Diffusion equation in the capillary bed Single-tissue compartment model
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e Slowly exchanging water (binding water)
* Heterogeneity of blood supply



Mathematical model for H,°0
to quantitatively asses regional blood flow

"t p

Water content in tissue

Water content in blood
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Clearance of radioactivity from cerebral tissue
after bolus carotid injection of 1°O-water
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Delay and dispersion in the observed AIF occur
in the arterial lines and in the catheter tubes.
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Procedures of the 1°O-Water Autoradiography

Arterial input function Tissue TAC
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CBF images at rest and after ACZ by "O-Water and PET

Case 1: Patients with It ICA stensis - 60
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Quantitation of rCBF corrected for Partial Volume Effect
using 1°0O-Water and PET
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lida H, Law |, etc, JCBFM 2000
Law et al., lida et al. JCBFM 2000



Validation using a dynamic equilibrium phantom

f white f grey
ROI Selection

SR X

Mean Flow White Grey




Results from a dynamic equilibrium phantom experiment
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Impact of Partial Volume Correction on Absolute CBF
in young healthy volunteers
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Comparison of the gray matter volumes
- 150-water PET vs stereologic volumes -

6
3 5f -
£
o
Q
£ 4 -
Yy o
o)
V =t x a(p) x Ep % 3
- £
t = average section thickness "y
— 21 B
a(p) = areaper point of the grid O 2.45 £ 0.83 4.94 £1.18
the total number of points 1 ' '
that fall on the object PET Histostereology

lida et al. abd Law I et al., JCBFM 2000



Quantitation of myocardial perfusion
150-water as a gold standard

1. Instantaneous equilibrium in tissue
2. Large first-pass extraction fraction

3. Chemically inert
*No retention
* No metabolism
* Adequate for math modeling



First-pass extraction fraction
dc;(t)

L= ={E-f}-Ca(®) — {E- f}- Cu(®)
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Systematic underestimation due to
Partial Volume Effect (PVE) in Myocardial PET
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Partial Volume Correction
in Myocardial Blood Flow Quantitation

VEOI ]

~ Arterial blood
volume

i

R)=[(a)f C,)®e P +(V,)C,(@

Water Perfusable Tissue Fraction (PTF)
lida et al, Circulation, 1988




Use of LV TAC and Spillover Correction
0O-Water Myocardial PET

Fitting f, « and V_to R(t)
Spillover correction

R() = aC()+V,C,)
LV(®) = B C,(0)+(1-HC(1

JNM 1992; 33:1669-1677
JNM 1995; 36:78-35




Input Function Tissue Curve
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lida et al., J Nucl Med 1992; 33:1669-1677




Validation of MBF Quantification by Use of O-15 Water
ROI Size Dependency of Estimated MBF
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Analysis of PET myocardial perfusion study

A difference image of a heart [150]-water study
Software packages

for MBF
The ROI definition step quantification:

The reoriented image

- aQuant

- Cardiac Vuer

- Munich Heart

- PMOD

- FlowQuant

- Carimas

- Syngo

i | - Hoquto
Parametric images \E‘E‘:“-;.:_}‘ A : ¥§ / - QPET

< - UW-QPP

- ImagenQ

Carimas ™ / Turku PET Centre - Corridor 4DM

Courtesy of Prof. J. Knuuti



MBF and water-perfusable tissue (PTF)
by'>O-water PET in a K9 model of OMI

MBF PTF EM
(ml/min/mL) (g/mL)

lida et al J Nucl Med. 41:1737-1745., 2000



PTI as a Myocardial Viability Marker
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FDG & PTF as Myocardial Viability Marker

Relative FDG Uptake
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Perfusable Tissue Index as a Potential Marker of Fibrosis in
Patients with Idiopathic Dilated Cardiomyopathy

ATF (Dev) PTF 1.5-

A B

1.0 |
E i
]
0.5+
| |
. P<0.01
FIGURE 1. Short-axis ATF (A) and PTF (B) images of a healthy 0.0-
volunteer. Arrow in PTF image indicates inferior wall. Spillover I T T 1

effects from adiacent liver tissue are oresent

Control DCM

FIGURE 2. PTI for healthy control subjects and DCM patients.

Knaapen P et al., J Nucl Med. 45:1299-1304, 2004



Missing issues in this talk

Modeling for metabolic tracers, e.g., 18F-FDG

Modeling for neuro-receptor ligands (reversible tracers)
and application to drug development and evaluation.

Appearance of metabolized molecules in the blood

Examples where the existing compartment model is
limited or does not work.

etc



Future perspectives

Mismatch between PET and CT images in attenuation correction
= A novel approach for attenuation correction is needed

Metabolites in the AIF
= Total body PET to estimate the metabolites in the arterial blood

Logistical complexity that made the usage of >O-oxygen inhalation PET difficult
= Comprehensive automated radio-tracer production + inhalation system
= Single Scan Dual Administration (SSDA) with sequential >0, and H,°0O

CT and PET mismatch Metabolites in AIF SSDA 150-Gas PET
| Input function Tissue curve

Attenuation at resting basaline applied o dipyridamole emission image
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FIGURE 7. echaniems for attenuation artifacts using post Time (Minutes)

dipynidamode scan. Legend is the same as Figurs 6.



Total Body PET scanner with axial FOV of 106 cm
Biograph Vision Quadra - Siemens Healthineers
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Simultaneous PETScan of brain Heart
Headtome-V Dual (J Nucl Med;.1998)




