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Examples of astronomical imaging data



NASA Chandra X-ray observatory

soft X-ray image (0.5 - 7 keV)

Hubble Space Telescope (HST)

optical image (435+814 nm)



Hubble Space Telescope (HST) optical (435 + 814 nm) (PSF FWHM ~ 0.1”) 



NOT/NOTCam near-infrared (2.2 µm) (PSF FWHM ~ 1”) 

2010O 2010P



Gemini-N/Altair near-infrared (1.1-2.2 µm) (PSF FWHM ~ 0.1”) 

       

1 kpc



Romero-Canizales (2011)

Very Large Array (VLA) radio image (8.46 GHz = 3.5 cm) (PSF FWHM ~ 0.5”) 



Romero-Canizales (2011)



L18 M. A. Pérez-Torres et al.: An extremely prolific supernova factory in the buried nucleus of the starburst galaxy IC 694

region of Arp 299-A (see Fig. 1) is heavily dust-enshrouded,
thus making the detections of SNe very challenging even at near-
infrared wavelengths. Yet, Arp 299 hosts recent and intense star-
forming activity, as indicated by the relatively high frequency of
supernovae discovered at optical and near-infrared wavelengths
in its outer, much less extinguished regions (Forti et al. 1993;
van Buren et al. 1994; Li et al. 1998; Yamaoka et al. 1998; Qiu
et al. 1999; Mattila et al. 2005).

The brightest component at infrared and radio wavelengths is
IC 694 (A in the top panel of Fig. 1; hereafter Arp 299-A), which
accounts for ∼50% of the total infrared luminosity of the sys-
tem (Alonso-Herrero et al. 2000; Charmandaris et al. 2002), and
∼70% of its 5 GHz radio emission (Neff et al. 2004). Numerous
H II regions populate the system near star-forming regions,
which implies that star formation has been occurring at a high
rate for past ∼10 Myr (Alonso-Herrero et al. 2000). Given that
IC 694 accounts for most of the infrared emission in Arp 299,
it is the region that is most likely to contain new SNe (Condon
1992). Since optical and near-infrared observations are likely to
miss a significant fraction of CCSNe in the innermost regions
of Arp 299-A due to high values of extinction (AV ∼ 34−40,
Gallais et al. 2004; Alonso-Herrero et al. 2009) and the lack of
the necessary angular resolution, radio observations of Arp 299-
A at high angular resolution, high sensitivity are the only way of
detecting new CCSNe and measuring directly and independently
of any model its CCSN and star formation rates. Very Long
Baseline Array (VLBA) observations carried out during 2002
and 2003 resulted in the detection of five compact sources (Neff
et al. 2004), one of which (A0) was identified as a young SN.

2. eEVN observations and results

We used the electronic European VLBI Network (e-EVN)
(Szomoru 2006) to image Arp 299-A at a frequency of 5 GHz
over 2 epochs, to directly detect recently exploded core-collapse
supernovae by means of the variability of their compact ra-
dio emission (see Appendix A for a detailed description of
our observing strategy, calibration and imaging procedures,
and source detection and techniques for flux density extrac-
tion). The attained off-source root-mean-square (rms) noise
level was 39 µJy/beam and 24 µJy/beam for the 8 April 2008
and 5 December 2008 observations, respectively, and enables
26 compact components to be detected above 5 rms (see Fig. 1).
Since the EVN radio image on 5 December 2008 is much deeper
than the one obtained on 8 April 2008, it is not surprising that
we detected a larger number of VLBI sources in our second
epoch (25) than in our first one (15). This allowed us to go back
to our first-epoch image and extract the flux density for the new
components (A15 through to A25 in Fig. 1), which show ≥5 rms
detections only in the December 2008 image. This procedure al-
lowed us to recover four components above 3σ (A15, A18, A22,
and A25), based on a positional coincidence with the peak of
brightness of our second epoch of greater than ∼0.5 milliarcsec,
i.e., much smaller than the synthesized interferometric beam.

Our results demonstrate that a very compact rich nuclear
starburst in Arp 299-A exists and, in general, are in excellent
agreement with independent results reported by Ulvestad (2009).
The angular size encompassed by the radio emitting sources in
Arp 299-A is smaller than 0.7′′ × 0.4′′, corresponding to a pro-
jected linear size of (150 × 85) pc. To facilitate comparisons,
we define here a fiducial supernova radio luminosity equal to
three times the image rms in the 8 April 2008 epoch, which cor-
responds to 2.9 × 1026 erg s−1 Hz−1. In this way, the radio lu-
minosities for the VLBI components range between 1.1 (A25)
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Fig. 1. Top: 5 GHz VLA archival observations of Arp 299 on
24 October 2000, displaying the five brightest knots of radio emission
in this merging galaxy. Middle and bottom: contour maps drawn at five
times the rms of our 5 GHz eEVN observations of the central 500 light
years of the luminous infrared galaxy Arp 299-A on 8 April 2008 and
5 December 2008, revealing a large population of relatively bright, com-
pact, non-thermal emitting sources. The size of the FWHM synthesized
interferometric beam was (0.6 arcsec × 0.4 arcsec) for the VLA ob-
servations, and (7.3 milliarcsec × 6.3 milliarcsec) and (8.6 milliarc-
sec × 8.4 milliarcsec) for the EVN observations on 8 April 2008 and
5 December 2008, respectively. To guide the reader’s eye, we show in
cyan the components detected only at the 5 December 2008 epoch.

and 7.3 (A1) and between 1.0 (A13) and 7.7 (A1) times the
fiducial value, for the VLBI observations on 8 April 2008 and
5 December 2008, respectively (see Table 1 for details).

3. Discussion

The radio emission from the compact sources detected from our
VLBI observations can be explained in principle within two
different physical scenarios: (i) thermal radio emission from
super star clusters (SSCs) hosting large numbers of young,

Perez-Torres+2009
Ulvestad (2009)

1000 pc
Very Long Baseline Array (VLBA) radio image 
(2.3 GHz = 13 cm) PSF FWHM ~ 0.5 milliarcsec 
       



Detecting time-variability: astronomical and medical imaging 

Kankare+2012

• Detection and study of stellar explosions (supernovae) by repeated imaging of 
galaxies 

• SN detection by precise image alignment, matching of the point spread functions 
(PSFs), intensity and background levels followed by image subtraction 



Detecting time-variability: astronomical and medical imaging 

• Detection and study of stellar explosions (supernovae) by repeated imaging of 
galaxies 

• SN detection by precise image alignment, matching of the point spread functions 
(PSFs), intensity and background levels followed by image subtraction 

• Monitoring of volumetric changes, e.g., loss of tissue in Alzheimer’s 
• Register new and reference images using natural landmarks, normalise image 

intensities and apply image subtraction to reveal tiny volumetric changes

Bradley et al. 2002, British J. of Radiology, 75, 506

Reference      new +6 months  subtracted



Vääristyneen kuvan perusmalli

Millä tahansa optisella systeemillä havaittu kuva sisältää aina instrumentin
aiheuttamia vääristymiä ja kohinaa, joten se ei sellaisenaan kerro ”totuutta”.
Matemaattisesti tämä voidaan ilmaista lausekkella

b(~x) = f (~x) ⇤ p(~x) + n(~x) ,

missä b(~x) on havaittu kuva, f (~x) on todellinen kuva, p(~x) on
laitefunktio, n(~x) on kohinatermi ja ⇤ tarkoittaa konvoluutiota. Vektori ~x
on korostamassa sitä seikkaa, että kaikki funktiot riippuvat paikasta
kuvassa. Yksiulotteisessa tapauksessa konvoluutio jatkuville funktioille on

(f ⇤ g)(x) =

Z 1

�1
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328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the
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Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287
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Convolution 
• With convolution can reduce the noise and therefore increase the S/N while 

degrading spatial resolution 
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In the case of 1-D functions
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In the case of discrete 1-D functions

• With convolution can reduce the noise and therefore increase the S/N while 
degrading spatial resolution 



1052 STARCK, PANTIN, & MURTAGH

2002 PASP, 114:1051–1069

Fig. 1.—Active galactic nucleus of NGC 1068 observed at 20 mm. Left: Raw image is highly blurred by telescope diffraction. Right: Restored image using the
multiscale entropy method reveals the inner structure in the vicinity of the nucleus.

this was not the case for the spherically aberrated HST PSF.
Whenever the PSF “wings” are extended and irregular, decon-
volution offers a straightforward way to mitigate the effects of
this and to upgrade the core region of a point source. One usage
of deconvolution of continuing importance is in information
fusion from different detectors. For example, Faure et al. (2002)
deconvolve HST images when correlating with ground-based
observations. In Radomski et al. (2002), Keck data are decon-
volved for study with HST data. VLT data are deconvolved in
Burud et al. (2002), with other ESO and HST data used as
well. In planetary work, Coustenis et al. (2001) discuss CFHT
data as well as HST and other observations.
What emerges very clearly from this small sample—which

is in no way atypical—is that a major use of deconvolution is
to help in cross-correlating image and signal information.
An observed signal is never in pristine condition, and

improving it involves inverting the spoiling conditions, i.e.,
finding a solution to an inverse equation. Constraints related
to the type of signal we are dealing with play an important
role in the development of effective and efficient algorithms.
The use of constraints to provide for a stable and unique so-
lution is termed regularization. Examples of commonly used
constraints include a result image or signal that is nonnegative
everywhere, an excellent match to source profiles, necessary
statistical properties (Gaussian distribution, no correlation, etc.)
for residuals, and absence of specific artifacts (ringing around
sources, blockiness, etc.).
Our review opens in § 2 with a formalization of the problem.

In § 3, we consider the issue of regularization. In § 4, the
CLEAN method, which is central to radio astronomy, is de-
scribed. Bayesian modeling and inference in deconvolution is
reviewed in § 5. In § 6, we introduce wavelet-based methods
as used in deconvolution. These methods are based on multiple
resolution or scale. In §§ 7 and 8, important issues related to
resolution of the output result image are discussed. Section 7

is based on the fact that it is normally not worthwhile to target
an output result with better resolution than some limit, for
instance, a pixel size. In § 8, we investigate when, where, and
how missing information can be inferred to provide
superresolution.

2. THE DECONVOLUTION PROBLEM
Noise is the bane of the image analyst’s life. Without it we

could so much more easily rectify data, compress them, and
interpret them. Unfortunately, however, deconvolution becomes
a difficult problem due to the presence of noise in high-quality
or deep imaging.
Consider an image characterized by its intensity distribution

(the “data”) I, corresponding to the observation of a “real
image” O through an optical system. If the imaging system is
linear and shift-invariant, the relation between the data and the
image in the same coordinate frame is a convolution:

!" !"

I(x, y) p P(x# x , y# y )O(x , y )dx dy! ! 1 1 1 1 1 1
x p#" y p#"1 1

! N(x, y)

p (P ∗ O)(x, y)! N(x, y), (1)

where P is the PSF of the imaging system and N is additive
noise.
In Fourier space, we have

ˆˆ ˆ ˆI(u, v) p O(u, v)P(u, v)! N(u, v). (2)

We want to determine knowing I and P. This inverseO(x, y)
problem has led to a large amount of work, the main difficulties
being the existence of (1) a cutoff frequency of the PSF and
(2) the additive noise (see, for example, Cornwell 1989;

Deconvolution 
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multiscale entropy method reveals the inner structure in the vicinity of the nucleus.

this was not the case for the spherically aberrated HST PSF.
Whenever the PSF “wings” are extended and irregular, decon-
volution offers a straightforward way to mitigate the effects of
this and to upgrade the core region of a point source. One usage
of deconvolution of continuing importance is in information
fusion from different detectors. For example, Faure et al. (2002)
deconvolve HST images when correlating with ground-based
observations. In Radomski et al. (2002), Keck data are decon-
volved for study with HST data. VLT data are deconvolved in
Burud et al. (2002), with other ESO and HST data used as
well. In planetary work, Coustenis et al. (2001) discuss CFHT
data as well as HST and other observations.
What emerges very clearly from this small sample—which

is in no way atypical—is that a major use of deconvolution is
to help in cross-correlating image and signal information.
An observed signal is never in pristine condition, and

improving it involves inverting the spoiling conditions, i.e.,
finding a solution to an inverse equation. Constraints related
to the type of signal we are dealing with play an important
role in the development of effective and efficient algorithms.
The use of constraints to provide for a stable and unique so-
lution is termed regularization. Examples of commonly used
constraints include a result image or signal that is nonnegative
everywhere, an excellent match to source profiles, necessary
statistical properties (Gaussian distribution, no correlation, etc.)
for residuals, and absence of specific artifacts (ringing around
sources, blockiness, etc.).
Our review opens in § 2 with a formalization of the problem.

In § 3, we consider the issue of regularization. In § 4, the
CLEAN method, which is central to radio astronomy, is de-
scribed. Bayesian modeling and inference in deconvolution is
reviewed in § 5. In § 6, we introduce wavelet-based methods
as used in deconvolution. These methods are based on multiple
resolution or scale. In §§ 7 and 8, important issues related to
resolution of the output result image are discussed. Section 7

is based on the fact that it is normally not worthwhile to target
an output result with better resolution than some limit, for
instance, a pixel size. In § 8, we investigate when, where, and
how missing information can be inferred to provide
superresolution.

2. THE DECONVOLUTION PROBLEM
Noise is the bane of the image analyst’s life. Without it we

could so much more easily rectify data, compress them, and
interpret them. Unfortunately, however, deconvolution becomes
a difficult problem due to the presence of noise in high-quality
or deep imaging.
Consider an image characterized by its intensity distribution

(the “data”) I, corresponding to the observation of a “real
image” O through an optical system. If the imaging system is
linear and shift-invariant, the relation between the data and the
image in the same coordinate frame is a convolution:

!" !"

I(x, y) p P(x# x , y# y )O(x , y )dx dy! ! 1 1 1 1 1 1
x p#" y p#"1 1

! N(x, y)

p (P ∗ O)(x, y)! N(x, y), (1)

where P is the PSF of the imaging system and N is additive
noise.
In Fourier space, we have

ˆˆ ˆ ˆI(u, v) p O(u, v)P(u, v)! N(u, v). (2)

We want to determine knowing I and P. This inverseO(x, y)
problem has led to a large amount of work, the main difficulties
being the existence of (1) a cutoff frequency of the PSF and
(2) the additive noise (see, for example, Cornwell 1989;

In Fourier space:

We have observed data I (intensity distribution) corresponding to an 
observation of a “real image” O through an imaging system characterised 
by the PSF P and additive noise N.

Starck, Pantin & Murtagh 2002: Deconvolution in Astronomy 
https://iopscience.iop.org/article/10.1086/342606/pdf

The Convolution Theorem: 
Convolution in either 
domain is equivalent 
to multiplication in the 
other.
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Katsaggelos 1993; Bertero & Boccacci 1998; Molina et al.
2001).
A solution can be obtained by computing the Fourier trans-

form of the deconvolved object by a simple division betweenÔ
the image and the PSF :ˆ ˆI P

ˆ ˆI(u, v) N(u, v)ˆ ˆÕ(u, v) p p O(u, v)! . (3)ˆ ˆP(u, v) P(u, v)

This method, sometimes called the Fourier-quotient method,
is very fast. We need to do only a Fourier transform and an
inverse Fourier transform. For frequencies close to the fre-
quency cutoff, the noise term becomes important, and the noise
is amplified. Therefore, in the presence of noise, this method
cannot be used.
Equation (1) is usually in practice an ill-posed problem. This

means that there is no unique and stable solution.
The diversity of algorithms to be looked at in the following

sections reflects different ways of recovering a “best” estimate
of the source. If one has good prior knowledge, then simple
modeling of PSF-convolved sources with a set of variable
parameters is often used. In fact, this is often a favored ap-
proach, in order to avoid deconvolution, even though its users
are unaware of the consequences of its spatially correlated
residuals. Lacking specific source information, one then relies
on general properties, which have been referred to in § 1. The
algorithms described in our review approach these issues in
different ways.
With linear regularized methods (§ 3) we use a smoothing/

sharpening trade-off. CLEAN assumes our objects are point
sources. We discuss the powerful Bayesian methodology in
terms of different noise models that can be applicable. Maxi-
mum entropy makes a very specific assumption about source
structure, but in at least its traditional formulations it was poor
at addressing the expected properties of the residuals produced
when the estimated source was compared to the observations.
Some further work is reviewed that models planetary images
or extended objects. So far, all of these methods work, usually
iteratively, on the given data.
The story of § 6 is an answer to the question: Where and

how do we introduce resolution scale into the methods we
review in § 3, 4, and 5, and what are the benefits of doing
this?
Some varied directions that deconvolution can take are as

follows:

1. Superresolution: object spatial frequency information out-
side the spatial bandwidth of the image formation system is
recovered.
2. Blind deconvolution: the PSF P is unknown.
3. Myopic deconvolution: the PSF P is partially known.
4. Image reconstruction: an image is formed from a series

of projections (computed tomography, positron emission
tomography [PET], and so on).

We will discuss only the deconvolution and superresolution
problems in this paper.
In the deconvolution problem, the PSF is assumed to be

known. In practice, we have to construct a PSF from the data
or from an optical model of the imaging telescope. In astron-
omy, the data may contain stars, or one can point toward a
reference star in order to reconstruct a PSF. The drawback is
the “degradation” of this PSF because of unavoidable noise or
spurious instrument signatures in the data. So, when recon-
structing a PSF from experimental data, one has to reduce very
carefully the images used (background removal, for instance)
or otherwise any spurious feature in the PSF would be repeated
around each object in the deconvolved image. Another problem
arises when the PSF is highly variable with time, as is the case
for adaptive optics images. This usually means that the PSF
estimated when observing a reference star, after or before the
observation of the scientific target, has small differences from
a perfect PSF. In this particular case, one has to turn toward
myopic deconvolution methods (Christou et al. 1999) in
which the PSF is also estimated in the iterative algorithm
using a first guess deduced from observations of reference
stars.
Another approach consists of constructing a synthetic PSF.

Several studies (Buonanno et al. 1983; Moffat 1969; Djorgov-
ski 1983; Molina et al. 1992) have suggested a radially sym-
metric approximation to the PSF:

"b
2r

P(r) ∝ 1! . (4)2( )R

The parameters b and R are obtained by fitting the model with
stars contained in the data.

3. LINEAR REGULARIZED METHODS
It is easy to verify that the minimization of k I(x, y)"

, where the asterisk means convolution,2P(x, y) ∗ O(x, y)k
leads to the least-squares solution:

∗ˆ ˆP (u, v)I(u, v)ˆ̃O(u, v) p , (5)2ˆd P(u, v)F

which is defined only if (the Fourier transform of theP̂(u, v)
PSF) is different from zero. A tilde indicates an estimate. The
problem is generally ill-posed and we need to introduce reg-
ularization in order to find a unique and stable solution.
Tikhonov regularization (Tikhonov et al. 1987) consists of

minimizing the term

J (O) pk I(x, y)" (P ∗ O)(x, y) k !l k H ∗ O k , (6)T

where H corresponds to a high-pass filter. This criterion con-
tains two terms. The first, ,2kI(x, y)" P(x, y) ∗ O(x, y)k
expresses fidelity to the data , and the second,I(x, y)

This method, sometimes called the Fourier-quotient method, is very fast. We need 
to do only a Fourier transform and an inverse Fourier transform. However, in the 
presence of noise, this method cannot be used. 
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Figure 16. Di↵erence images of all epochs minus the 2006 epoch the in J, H and

Ks bands. The brightening along the western and northeastern edges of the ring is

prominent. The field of view in each image is 3.0 00 ⇥ 2.5 00.

Ahola (2018)
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FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the
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or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
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ed pixels and subtract them from the original values. This
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ation requires about the same computing time. By applying
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minute with a 200 MHz PC; this could certainly be
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F. Courbin et al.: HE 0435-1223: time delays, dynamics and baryonic fraction of the lens. IX.

Table 1. Summary of the optical monitoring data.

Telescope Camera FoV Pixel Period of observation #obs. Exp. time Seeing Sampling
Euler C2 11′ × 11′ 0.′′344 Jan. 2004–Mar. 2010 301 5 × 360 s 1.′′37 6 days
Mercator MEROPE 6.5′ × 6.5′ 0.′′190 Sep. 2004–Dec. 2008 104 5 × 360 s 1.′′59 11 days
Maidanak SITE 8.9′ × 3.5′ 0.′′266 Oct. 2004–Jul. 2006 26 10 × 180 s 1.′′31 16 days
Maidanak SI 18.1′ × 18.1′ 0.′′266 Aug. 2006–Jan. 2007 8 6 × 300 s 1.′′31 16 days
SMARTS ANDICAM 10′ × 10′ 0.′′300 Aug. 2003–Apr. 2005 136 3 × 300 s ≤1.′′80 4 days
TOTAL – – – Aug. 2003–Mar. 2010 575 242.5 h – 3.2 days

Notes. The temporal sampling is the mean number of days between two consecutive observations.
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Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 4. Left: combination of the four original HST/NIC2 F160W frames of HE 0435-1223. The field of view is 9 × 9 arcsec. Middle: deconvolved
image, where the lensing galaxy is modelled as a de Vaucouleurs profile (see text). The nearest galaxy on the plane of the sky, G22, is also
indicated. Right: residual map in units of the noise. The colour scale ranges from −4σ (white) to +4σ (black).

Table 2. Relative astrometry of HE 0435-1223 as derived from the simultaneous deconvolution of all NIC2 frames.

This work Morgan et al. (2005) Kochanek et al. (2006)
ID ∆α (′′) ∆δ (′′) Mag (F160W) ∆α (′′) ∆δ (′′) ∆α (′′) ∆δ (′′)
A 0. 0. 17.20 ± 0.01 0. 0. 0. 0.
B –1.4743 ± 0.0004 +0.5518 ± 0.0006 17.69 ± 0.01 –1.477 ± 0.002 +0.553 ± 0.002 –1.476 ± 0.003 +0.553 ± 0.001
C –2.4664 ± 0.0003 –0.6022 ± 0.0013 17.69 ± 0.02 –2.469 ± 0.002 –0.603 ± 0.002 –2.467 ± 0.002 –0.603 ± 0.004
D –0.9378 ± 0.0005 –1.6160 ± 0.0006 17.95 ± 0.01 –0.938 ± 0.002 –1.615 ± 0.002 –0.939 ± 0.002 –1.614 ± 0.001
G –1.1706 ± 0.0030 –0.5665 ± 0.0004 16.20 ± 0.12 –1.169 ± 0.002 –0.572 ± 0.002 –1.165 ± 0.002 –0.573 ± 0.002

Notes. The 1σ error bars are the internal errors after deconvolution. Additional 2-mas systematic errors must be added to these (see text). The
magnitudes are in the Vega system. For comparison we show the results from Morgan et al. (2005) using HST/ACS images and from Kochanek
et al. (2006) using HST/NIC2 images.

Table 3. Shape parameters for the lensing galaxy in HE 0435-1223.

PA (◦) Ellipticity aeff (′′) beff (′′) reff (′′)
174.8 (1.7) 0.09 (0.01) 1.57 (0.09) 1.43 (0.08) 1.50 (0.08)

Notes. The position angle (PA) is measured positive east of north. The
1σ error bars (internal errors) are given in parenthesis.

minimised the residual microlensing variations to be modelled
in the 3 others. This is best verified with component B as a ref-
erence.

With B as a reference light curve, we note that microlensing
in C and D remains smooth and can therefore be modelled with a
low-order polynomial drawn over the full length of the monitor-
ing. However, A contains higher frequency variations that need
to be accounted for in each season individually, as illustrated
in Fig. 5. In doing this, we obtain fairly good fits to the light
curves, as shown in the residual signal. To quantify the quality of
these residuals, we applied the so-called one-sample runs test of
randomness, a statistical test to estimate whether successive rea-
lizations of a random variable are independent or not. In practice
the test was applied to a sequence of residuals to decide whether
a model is a good representation of the data. For most seasons
in our curves the number of runs was between 1σ and 3σ lower
than the value expected for independent random residuals. Thus,
although our microlensing model is not fully representative of
the real signal, the deviations from the data points remain small.

We tested the robustness of our curve-shifting method in sev-
eral ways. First, we modelled the microlensing variations using

polynomial fits of different orders. Second, we fitted these poly-
nomials either across each individual season or across groups of
seasons. Finally, we masked the seasons with the worst residual
signal (Fig. 5). All these changes had only a negligible impact
on the time delay measurements. We note that this is not the
case when considering only two or three seasons of data, which
shows the importance of a long-term monitoring with good tem-
poral sampling.

4.3. Final results

Our results are summarised in Table 4 and are compared with
the previous measurements of Kochanek et al. (2006), who
have used pure a polynomial fit to the light curves and two
seasons of monitoring. Using the same data but with our modi-
fied dispersion technique, we obtained very similar time delays
as Kochanek et al. (2006), but larger error bars. We prefer keep-
ing a minimum possible number of degrees of freedom (e.g.,
in the polynomial order used to represent microlensing), in ac-
cordance with the Occam’s razor principle, even to the cost of
apparently larger formal error bars.

We also note that Kochanek et al. (2006) give their time de-
lays with respect to A, which, with seven seasons of data, turns
out to be the most affected by microlensing. As a consequence
the error bars on these time delays are dominated by residual mi-
crolensing rather than by statistical errors. The time delays used
in the rest of our analysis are therefore measured relative to B.

Finally, we used the mean values of our microlensing cor-
rections to estimate the macrolensing R-band flux ratios between
the four quasar images, assuming that no long-term microlensing
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object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
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Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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image, where the lensing galaxy is modelled as a de Vaucouleurs profile (see text). The nearest galaxy on the plane of the sky, G22, is also
indicated. Right: residual map in units of the noise. The colour scale ranges from −4σ (white) to +4σ (black).
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Fig. 2. Result from the simultaneous deconvolution of the ground-based frames. G is the lensing galaxy and G22 (Morgan et al. 2005) is its closest
neighbour on the plane of the sky. The grey scale in the deconvolved image is set to display all light level above 3 × σsky. The FWHM resolution
of the deconvolved image is 0.′′34.

images and the lensing galaxy and to constrain the light distri-
bution in the lensing galaxy. The data are part of the CASTLES
project (Cfa-Arizona Space Telescope LEns Survey) and were
acquired in October 2004 (PI: C. S. Kochanek) with the
camera 2 of NICMOS, the Near-Infrared Camera and Multi-
Object Spectrometer. They consist of four dithered frames taken
through the F160W filter (H-band) in the MULTIACCUM mode
with 19 samples and calibrated by CALNICA, the HST image
reduction pipeline. The total exposure time amounts to approxi-
mately 44 min and the pixel scale is 0.′′075652.

The MCS deconvolution algorithm was used to combine the
four NIC2 frames into a deep sharp IR image. We followed
the iterative technique described in Chantry et al. (2010) and
Chantry & Magain (2007), which allowed us to build a PSF in
the absence of a stellar image in the field of view. The method
can be summarised as follows. First, we estimated the PSF us-
ing Tiny Tim software (Krist & Hook 2004) and carried out
the simultaneous deconvolution of the four F160W frames using
a modified version of the MCS software (Magain et al. 2007).
This produces a first approximation of the extended channel of
the deconvolved image, i.e., the lensing galaxy and the lensed
quasar host galaxy. We reconvolved the latter by the PSF and
subtracted it from the original data. A new estimate of the PSF
was built on the new image that now contained only the quasar
images. The process was repeated until the residual image was
satisfactory (for more details see Chantry et al. 2010). Figure 4
shows the result. In this image the pixel size is half that of the
original data and the resolution 0.′′075 (FWHM), unveiling an
almost full Einstein ring.

In the final deconvolved image, the lensing galaxy was mod-
elled analytically rather than numerically to minimise the num-
ber of degrees of freedom. We found that the best-fit profile
is an elliptical de Vaucouleurs with the parameters as given
in Table 3. The astrometry of the quasar images relative to
the lensing galaxy, corrected for the known distortions of the
NIC2 camera and for the difference of pixel scale between the x
and y directions is summarised in Table 2. Based on our previ-
ous work using deconvolution of NICMOS images (Chantry &
Magain 2007), we estimate that the total error bars, accounting
for residual correction of the distortions amounts to 2 mas. Our
results agree well with previous measurements from HST/ACS

(Morgan et al. 2005) or HST/NIC2 imaging (Kochanek et al.
2006), also shown for comparison in Table 2.

4. Time delay measurement

4.1. Curve shifting method

Our method to measure the time delays is based on the disper-
sion technique of Pelt et al. (1996): the light curves are shifted in
time and in magnitude to minimise a global dispersion function.
In addition, the light curves are distorted on long time scales
to account for slow microlensing variations. This was made by
adding low-order polynomials to either the full curves or to spe-
cific observing seasons.

Pelt et al. (1996) has defined several dispersion statistics be-
tween pairs of light curves. We implemented a dispersion es-
timate similar to D2

3 (see Eq. (8) of Pelt et al. 1996), which
performed a linear interpolation between points of one of the
curves over a maximum range of 30 days. In the case of four
light curves, we defined a total dispersion that is the sum of the
dispersions computed using the 12 possible permutations of two
curves among four. Each pair was considered twice so to avoid
the arbitrary choice of a reference light curve. The photomet-
ric error bars were taken into account to weight the influence of
the data points in the dispersion. We then minimised the total
dispersion by modifying the time delays and the microlensing
polynomials.

4.2. Microlensing and influence on the time delay

Simulated light curves that mimic the observed data were used to
estimate the robustness of the method. The error bars on the time
delays were calculated using Monte Carlo simulations, i.e., re-
distributing the magnitudes of the data points according to their
photometric error bars. The width of the resulting time delay
distributions gives us the 1σ error bars.

Because of microlensing we do not have access to the in-
trinsic variations of the quasar. We represent microlensing in
three of the light curves as a relative variation with respect to
the fourth light curve, taken as a reference. We tested each of
the four light curves in turn as a reference and kept the one that
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Table 1. Summary of the optical monitoring data.

Telescope Camera FoV Pixel Period of observation #obs. Exp. time Seeing Sampling
Euler C2 11′ × 11′ 0.′′344 Jan. 2004–Mar. 2010 301 5 × 360 s 1.′′37 6 days
Mercator MEROPE 6.5′ × 6.5′ 0.′′190 Sep. 2004–Dec. 2008 104 5 × 360 s 1.′′59 11 days
Maidanak SITE 8.9′ × 3.5′ 0.′′266 Oct. 2004–Jul. 2006 26 10 × 180 s 1.′′31 16 days
Maidanak SI 18.1′ × 18.1′ 0.′′266 Aug. 2006–Jan. 2007 8 6 × 300 s 1.′′31 16 days
SMARTS ANDICAM 10′ × 10′ 0.′′300 Aug. 2003–Apr. 2005 136 3 × 300 s ≤1.′′80 4 days
TOTAL – – – Aug. 2003–Mar. 2010 575 242.5 h – 3.2 days

Notes. The temporal sampling is the mean number of days between two consecutive observations.
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Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 2. Result from the simultaneous deconvolution of the ground-based frames. G is the lensing galaxy and G22 (Morgan et al. 2005) is its closest
neighbour on the plane of the sky. The grey scale in the deconvolved image is set to display all light level above 3 × σsky. The FWHM resolution
of the deconvolved image is 0.′′34.

images and the lensing galaxy and to constrain the light distri-
bution in the lensing galaxy. The data are part of the CASTLES
project (Cfa-Arizona Space Telescope LEns Survey) and were
acquired in October 2004 (PI: C. S. Kochanek) with the
camera 2 of NICMOS, the Near-Infrared Camera and Multi-
Object Spectrometer. They consist of four dithered frames taken
through the F160W filter (H-band) in the MULTIACCUM mode
with 19 samples and calibrated by CALNICA, the HST image
reduction pipeline. The total exposure time amounts to approxi-
mately 44 min and the pixel scale is 0.′′075652.

The MCS deconvolution algorithm was used to combine the
four NIC2 frames into a deep sharp IR image. We followed
the iterative technique described in Chantry et al. (2010) and
Chantry & Magain (2007), which allowed us to build a PSF in
the absence of a stellar image in the field of view. The method
can be summarised as follows. First, we estimated the PSF us-
ing Tiny Tim software (Krist & Hook 2004) and carried out
the simultaneous deconvolution of the four F160W frames using
a modified version of the MCS software (Magain et al. 2007).
This produces a first approximation of the extended channel of
the deconvolved image, i.e., the lensing galaxy and the lensed
quasar host galaxy. We reconvolved the latter by the PSF and
subtracted it from the original data. A new estimate of the PSF
was built on the new image that now contained only the quasar
images. The process was repeated until the residual image was
satisfactory (for more details see Chantry et al. 2010). Figure 4
shows the result. In this image the pixel size is half that of the
original data and the resolution 0.′′075 (FWHM), unveiling an
almost full Einstein ring.

In the final deconvolved image, the lensing galaxy was mod-
elled analytically rather than numerically to minimise the num-
ber of degrees of freedom. We found that the best-fit profile
is an elliptical de Vaucouleurs with the parameters as given
in Table 3. The astrometry of the quasar images relative to
the lensing galaxy, corrected for the known distortions of the
NIC2 camera and for the difference of pixel scale between the x
and y directions is summarised in Table 2. Based on our previ-
ous work using deconvolution of NICMOS images (Chantry &
Magain 2007), we estimate that the total error bars, accounting
for residual correction of the distortions amounts to 2 mas. Our
results agree well with previous measurements from HST/ACS

(Morgan et al. 2005) or HST/NIC2 imaging (Kochanek et al.
2006), also shown for comparison in Table 2.

4. Time delay measurement

4.1. Curve shifting method

Our method to measure the time delays is based on the disper-
sion technique of Pelt et al. (1996): the light curves are shifted in
time and in magnitude to minimise a global dispersion function.
In addition, the light curves are distorted on long time scales
to account for slow microlensing variations. This was made by
adding low-order polynomials to either the full curves or to spe-
cific observing seasons.

Pelt et al. (1996) has defined several dispersion statistics be-
tween pairs of light curves. We implemented a dispersion es-
timate similar to D2

3 (see Eq. (8) of Pelt et al. 1996), which
performed a linear interpolation between points of one of the
curves over a maximum range of 30 days. In the case of four
light curves, we defined a total dispersion that is the sum of the
dispersions computed using the 12 possible permutations of two
curves among four. Each pair was considered twice so to avoid
the arbitrary choice of a reference light curve. The photomet-
ric error bars were taken into account to weight the influence of
the data points in the dispersion. We then minimised the total
dispersion by modifying the time delays and the microlensing
polynomials.

4.2. Microlensing and influence on the time delay

Simulated light curves that mimic the observed data were used to
estimate the robustness of the method. The error bars on the time
delays were calculated using Monte Carlo simulations, i.e., re-
distributing the magnitudes of the data points according to their
photometric error bars. The width of the resulting time delay
distributions gives us the 1σ error bars.

Because of microlensing we do not have access to the in-
trinsic variations of the quasar. We represent microlensing in
three of the light curves as a relative variation with respect to
the fourth light curve, taken as a reference. We tested each of
the four light curves in turn as a reference and kept the one that
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Fig. 3. R-band light curves of the four lensed images of HE 0435-1223 from December 2003 to April 2010. The magnitudes are given in relative
units as a function of the Heliocentric Julian Day (HJD), along with their total 1σ error bars. These light curves are available in tabular form at
the CDS.
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used for WFS and the distance between the reference source and the object
of interest.

In case of  good conditions and a bright,  nearby reference source, the
correction is  good and the resulting point  spread function (PSF) is  very
close to the diRraction limit. 

A good correction in the K-band corresponds to a SR larger than 30%. 

At shorter wavelengths (particularly in the J-band) or in the case of poor
conditions or a faint, distant reference source, the correction is only partial
- the Strehl ratio may only be a few percent.

Figure 3-1: Principle of Adaptive Optics

3.3. Infrared Observations with an AO system

Observing in the IR with an AO system is, in broad terms, very similar to
observing with other IR instruments. One has to deal with high and variable
backgrounds  and  modest  detector  cosmetics.   In  general,  the  IR
background,  particularly  at  longer  wavelengths,  is  higher  for  an  IR
instrument with an AO system, because of the additional optics in an AO
system.  Additionally,  the  classical  chop  and  nod  technique,  which  is
commonly used for the LW Flters in non-AO systems, works less well as the
DM introduces background Quctuations that do not cancel perfectly. This
does  not  degrade  L-band  observations  but  it  may  degrade  M-band
observations.  Given  the  relatively  small  Feld  of  view  of  CONICA,  it  is
possible to observe in the L-band without having to chop and nod. However,
the overheads are relatively large (typically 50-100%) because the sky has
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FWHM = 1” natural seeing FWHM = 0.1” (AO corrected)



The motion of a star around the central black 
hole in the Milky Way 



Davies et al. 2018

Multi-AO Imaging Camera for Deep Observations (MICADO) will enable ELT 
to perform diffraction limited: observations  
• 4 mas pixel scale providing 50” x 50” field of view with fully sampled diffraction 

limited PSF of the 39-m diameter ELT (FWHM = 12 mas at 2 µm)

θ ~  1.22 x λ / D


