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Course report

• The	minimum	length	is	9	pages	(12	pt	font)	of	text	(2	pages	based	on	each	of	the	four	
prac<cal	sessions	+	0.5	page	introduc<on	+	0.5	page	summary)	+	figures,	tables,	references	

• For	repor<ng	the	work	done	in	each	of	the	sessions	please	follow	the	advice	of	the	teachers	
• Keep	in	mind	the	learning	outcomes	(slide	4)	when	preparing	your	report	
• For	wri<ng	the	report	you	can	use	any	word	processing	soJware	that	you	are	familiar	with.	
Please,	save	the	report	as	PDF	

• Deadline	for	handing-in	the	reports	on	15th	August	
• For	late	submission	we	will	deduct	5%	per	(working)	day	!!



AJer	comple<ng	the	course	the	students	should	be	able	to:	

(1) Describe	the	principles	behind	some	advanced	astronomical	imaging	techniques	and	
iden<fy	suitable	topics	in	astrophysics	that	can	be	studies	with	them;	

(2)	Understand	the	physics	behind	some	of	the	most	important	medical	imaging	
modali<es	and	describe	their	value	in	clinical	applica<ons;	
(3)	Iden<fy	and	discuss	the	differences	and	similari<es	in	the	challenges	faced	when	
analyzing	data	in	these	two	different	disciplines;	
(4)	Describe	the	theore<cal	basis	and	suitability	of	several	image/signal	processing	and	
analysis	methods	commonly	used	in	astronomy	and	medical	imaging;	
(5)	Iden<fy	suitable	algorithms	and	apply	them	to	astronomical	and/or	medical	imaging	
datasets	to	enhance	their	scien<fic	and/or	clinical	value;	
(6)	Produce	a	wriZen	course	report

Learning outcomes



Thursday	14.6.		Astronomical	signal	and	image	processing	
10:00	-	11:30	Astronomical	imaging:	PSF,	alignment,	convolu<on,	deconvolu<on,	subtrac<on	
11:45	-	12:30	Tutorial	on	astronomical	imaging	
12:30	-	13:30	Lunch	
13:30	-	15:00	Astronomical	spectroscopy:	spa<al	and	spectral	resolu<on,	classifica<on	
15:00	-	16:00	Tutorial	on	astronomical	spectroscopy	and	independent	work	

Practical session IV



Astronomical imaging



Nordic Optical Telescope, La Palma, Canary Islands

Telescopes





Point spread function (PSF) 

Ideal (diffraction limited) 
PSF if no atmosphere 

θ ~  1.22 x λ / D 

(where λ is wavelength, 
D the diameter of the 
telescope and θ is in radians) 

Atmospheric turbulence broadens the PSF resulting in a 
Gaussian PSF

CCD-kuvissa olevien tähtien muodot noudattavat yleensä Gaussin profiilia

I (r) = I (0) exp(�r

2/2�2)

missä I (0) on keskusintensiteetti ja � mittaa profiilin leveyttä. Tavallisesti
leveyden mittana käytetään puoliarvoleveyttä (full width at half
maximum, FWHM), eli profiilin leveyttä intensiteetin puoliarvokohdassa,
josta käytetään myös nimitystä seeing. Sen yhteys �:aan on FWHM =
2
p

ln 4 � ⇡ 2.35�. Toinen yleisesti käytetty approksimaatio on Moffatin
profiili

I (r) = I (0)
h
1 + (21/� � 1)(r/R)2

i��
,

missä R = FWHM/2 ja � = 2.5 antaa yleensä tähtiin hyvin sopivan
profiilin. Tähtien profiilit ovat harvoin täysin pyörähdyssymmetrisiä johtuen
seeingin vaihteluista, seurannan virheistä ja optisista vääristymistä, joten
yllämainitut funktiot kuvaavat tähden profiilia vain keskimäärin.
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Apupeilin kannatin mutkistaa diffraktiokuviota; tähden kuva muuttuu
tähtimäiseksi.
Peilikaukoputkissa myös apupeili ja sen pidike aiheuttavat oman lisänsä
diffraktiokuvioon, mistä seuraa, että tähdet näyttävät "tähdiltä".
Esimerkiksi avaruusteleskooppi HST:llä ongelma on erityisen paha.
Mutkikas diffraktiokuvio heikentää erotuskykyä ja vaikeuttaa kuvista
tehtäviä fotometrisia mittauksia.

() 15. syyskuuta 2008 5 / 62

HST-avaruusteleskoopin kuva kvasaarista OJ287. Alakuvassa HST:n
diffraktiokuvio (Yanny et al. 1997, ApJ 484, L113)
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328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the
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Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Vääristyneen kuvan perusmalli

Millä tahansa optisella systeemillä havaittu kuva sisältää aina instrumentin
aiheuttamia vääristymiä ja kohinaa, joten se ei sellaisenaan kerro ”totuutta”.
Matemaattisesti tämä voidaan ilmaista lausekkella

b(~x) = f (~x) ⇤ p(~x) + n(~x) ,

missä b(~x) on havaittu kuva, f (~x) on todellinen kuva, p(~x) on
laitefunktio, n(~x) on kohinatermi ja ⇤ tarkoittaa konvoluutiota. Vektori ~

x

on korostamassa sitä seikkaa, että kaikki funktiot riippuvat paikasta
kuvassa. Yksiulotteisessa tapauksessa konvoluutio jatkuville funktioille on

(f ⇤ g)(x) =

Z 1

�1
f (⌧)g(x � ⌧) d⌧

ja diskreeteille funktioille

(f ⇤ g)j =

m/2X

k=�m/2+1

fkgj�k .
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Convolution 



Convolution 
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In the case of 1-D functions
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In the case of discrete 1-D functions
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Signal-to-Noise Ratio 

• Most important measure of the level of 'goodness' of your observation 

• With convolution can reduce the noise and therefore increase the S/N 

Signal-to-Noise Ratio Signal-to-Noise Ratio 

● Most important measure of the level of 'goodness' of your observation
● Determines the integration time required for your observation

where noise1, noise2, ... = sources of noise
● 'CCD Equation':

NS = total number of photons collected from the object falling on npix pixels, 
Nbg = number of photons/pixel from sky background,  
ND = number of dark current electrons/pixel, 
NR = read noise electrons/pixel

S
N
=

signal

noise1
2noise2

2...noisen
2

S
N
=

N S

NSn pixN bgN DN R
2 

where noise1, noise2, ... are different sources of noise

x

y

I

NS npix

N*

Oletetaan, että mitataan tähden kirkkautta CCD:ltä käyttäen
ympyränmuotoista apertuuria, joka kattaa n

pix

pikseliä. Tähdestä saatava
signaali on N⇤ [e�] , taustataivaan taso N

S

[e�] ja pimeävirta N

D

[e�].
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S/N examples

S/N = 50 S/N = 10 S/N = 5 S/N = 3

S/N = 70

S/N = 7

S/N = 3.5

S/N = 1.5



Discovery of supernovae by precise alignment, PSF 
matching and subtraction of images

VLT epoch 1 VLT epoch 2



VLT/VIMOS 
B 10 hours 
V 5 hours 
R 15 hours 
I 30 hours

Melinder et al. 2011, 2012



Melinder et al. 2011, 2012



Melinder et al. 2011, 2012



8 E. C. Kool et al.

Figure 2. SN 2015ca and AT 2015cf in NGC 3110 with GeMS/GSAOI, at R.A. = 10h04m01.57s and Decl. = �06�28025.4800 and R.A.
= 10h04m01.53s and Decl. = �06�28025.8400, respectively. Top row, with linear scaling, shows the reference image (February 2016) and
discovery image (March 2015). Bottom row shows the full image subtraction and zoomed in around SN 2015ca, which shows AT 2015cf
visible to the South-West.

allowing for the constraints on t0. Regardless of SN type,
it is noteworthy that all four template fits are best fitted
with an extinction AV of 0. This is surprising as the SN is
very close to the nucleus where significant extinction would
be expected. Negligible extinction suggests we are observing
the SN in the foreground of the host’s nuclear regions.

5.2 SN 2015ca

SN 2015ca is best fitted by the Type IIP template, with
�̃2 = 3.8, but the stripped envelope template fits the data
too, with �̃2 = 5.0; see Fig. 7 and Table 5. In both cases
the fit requires moderate extinction (AV = 3.4+1.0

�1.7 and

AV = 2.8+0.3
�0.4, respectively) and a magnitude shift of ⇠1.5.

However neither template fits well the brightest epoch from
2015 April 6 with the NOT. The Type IIn template is poorly
fitted by the data, and seems inconsistent with the JHK
upper limits of the final epoch. We also fitted a Type Ia
light curve to the data based on the light curve of SN 2011fe
(Matheson et al. 2012; Zhang et al. 2016), because SN 2015ca
exploded in an isolated location seemingly far from recent
SF. With a �̃2 = 17.9 the Type Ia fit was clearly inferior to
the core collapse scenarios. The Type IIn, stripped envelope,
and Type Ia fits have been forced to take into account the
i’ -band limit from the NOT, i.e. the i’ -band curve is basi-

MNRAS 000, 1–19 (2017)

Discovery of supernovae by precise alignment, PSF 
matching and subtraction of images
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Mattila+2013

M 82          Gemini-N/ALTAIR+NIRI (AO) K-band

SN2008iz (+480d) HST/NICMOS subtracted
Kimani+2016

VLBA 8.4 GHz

 Dust obscured SNe characterised at radio wavelengths



IC 883

Kankare,SM+2012 First results from GeMS/GSAOI for project SUNBIRD 9

Figure 3. SN 2015cb at R.A. = 17h16m35.84s and Decl. = �10�20037.4800 in IRAS 17138-1017 with GeMS/GSAOI. From left to right,
with linear scaling: Reference image (March 2013), discovery image (March 2015) and image subtraction.

Template AV t0 C �̃2

SN 2013if (IRAS 18293-3413)

IIP, plateau 0.0+2.8
�0.0 67+1

�14 1.8+0.1
�0.4 7.1

IIP, tail 0.0+2.5
�0.0 136+83

�13 0.0+0.5
�1.7 4.7

IIn 0.0+2.7
�0.0 19+12

�3 3.1+0.1
�0.5 5.0

IIb/Ib/Ic 0.0+2.9
�0.0 18+3

�2 1.5+0.1
�0.5 7.4

SN 2015ca (NGC 3110)

IIP 3.4+1.0
�1.7 58+14

�5 1.5+0.4
�0.3 3.8

IIn 2.7+0.2
�0.7 25+17

�9 3.0+0.2
�0.2 10.3

IIb/Ib/Ic 2.8+0.3
�0.4 16+5

�2 1.3+0.2
�0.2 5.0

Ia 6.9+0.1
�0.7 5+1

�1 0.4+0.3
�0.2 17.9

SN 2015cb (IRAS 17138-1017)

IIP, plateau 4.6+0.3
�0.1 64+11

�7 �0.7+0.1
�0.3 11.7

IIP, tail 3.6+0.4
�0.1 134+15

�4 �2.2+0.2
�0.3 29.0

IIn 5.2+0.3
�0.1 24+5

�4 0.5+0.2
�0.2 32.4

IIb/Ib/Ic 4.7+0.1
�0.6 19+10

�1 �1.1+0.1
�0.2 11.2

AT 2015cf (NGC 3110)

IIP > 7.0 > 139 < 1.6 -

IIb/Ib/Ic > 0.0 > 105 < 2.0 -

Table 3. Results from fitting light curve templates to the three
SNe, with line-of-sight extinction AV , time t0 between explosion
date and discovery, and a fixed constant C representing the in-
trinsic magnitude di↵erence between SNe. The final column shows
the resulting �̃2 for each fit.

Figure 4. X-band (10GHz) VLA contours overlaid on
GeMS/GSAOI detection image of SN 2015ca and AT 2015cf. SN
2015ca is indicated by tick marks, AT 2015cf is separated by just
0.700.

cally matching with the i-band limit. The Type IIP fit was
consistent with the limit based on the detections.

The follow up at radio wavelengths with the VLA and
eEVN did not show any detections of SN 2015ca. For the
two likely scenarios the radio luminosity for Type IIP SNe
typically peaks between ⇠20-70 days post explosion and are
much fainter than stripped envelope SNe, which peak be-
tween 10-150 days post explosion (Romero-Cañizales et al.
2014). In the case of the IIP fit, the VLA non-detection
would have been 86+14

�5 days post explosion, meaning the rel-
atively faint radio signature of the SN would already have
been on the decline. For the stripped envelope fit, the obser-
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Figure 8. Template light curve fits for SN 2015cb in IRAS 17138-1017 are shown: Type IIP fitted in the plateau and tail phase, Type
IIn, and Type IIb/Ib/Ic

Figure 9. Template light curve fits for AT 2015cf in NGC 3110 are shown: Type IIP and Type IIb/Ib/Ic

poral baseline, in total 39 reported CCSNe have been discov-
ered in LIRGs in the optical, with 29 since 2000; see Table 5
for a complete list. This table is a result of cross referencing
all galaxies in the IRAS RBGS with LIR > 1011L� (cor-
rected for H0 = 70 km s�1) with the most up to date SN

catalogues available: Open Supernova Catalog (Guillochon
et al. 2017); Asiago Supernova Catalog (Barbon et al. 1999);
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Figure 6. The derived properties of the progenitor of SN 2008bk, assuming RV = 3.1 for log(Z/Z
�

) = �0.25 and 0.0. a) The joint posterior distribution
for reddening E(B � V) and temperature Te f f . The solid and dashed contours correspond to metallicities of log(Z/Z

�

) = �0.25 and 0.0, respectively. The
contours contain 68% and 95% of the probability for each model fit. b) The observed photometry, and detection limits, of the progenitor compared to the
best fit SED model (heavy blue line). The light blue shaded region are the SED boundaries corresponding to the 68% probability interval. c) The position
of the progenitor on the HR diagram. The meaning of the contours is the same as above. The shaded regions indicate locations on the HR diagram that are
inconsistent with the measured KS -band brightness. Over-plotted are the points from LMC metallicity STARS stellar evolution models, with initial masses
as labeled, corresponding to the positions of the end of He-burning (N), the termination point of the models (⌅) and the termination point for those stars that
become SAGB stars (•). The dashed grey lines show lines of constant radius on the HR diagram. d) Mass probability density distributions for the progenitor
of SN 2008bk, for log(Z/Z

�

) = �0.25 (solid) and 0.0 (dashed).

5 DISCUSSION & CONCLUSIONS

5.1 The nature of the progenitor of SN 2008bk

We have measured the properties of the progenitor of Type IIP SN
2008bk in pre-explosion observations coupled with late-time ob-
servations, using the same telescopes and instruments, in which the
progenitor (and the SN) are no longer observed. The absence of
the pre-explosion star in the late-time images confirms the original
identification of this star as the progenitor (Mattila et al. 2010). Us-
ing image subtraction techniques we have determined the infrared
brightness of the progenitor to much higher precision than allowed
by using the pre-explosion observations alone. With the benefit

of late-time HST observations we have estimated the residual SN
flux contamination to our template subtraction analysis, as well as
demonstrated that there is little contamination at IR wavelengths
from surrounding stars. In the optical, the complex and crowded
nature of the region hosting the SN most probably leads to over-
estimates of the progenitor brightness from photometry of the pre-
explosion observations alone. With the revised SED, constructed
from improved photometry, we have shown the progenitor has a
relatively high mass for a Type IIP SN progenitor: ⇠ 13M

�

. The
progenitor is found to have su↵ered large reddening and, corre-
spondingly, had a high temperature.

Our method for determining the masses of the progenitors

c
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FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

=
=

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Optimal Image Subtraction 



328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

=
=

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Optimal Image Subtraction 



328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

=
=

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Optimal Image Subtraction 



328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the
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Preface

This volume presents the proceedings of the workshop on The Restoration ofHST Im-
ages and Spectra, held at the Space Telescope Science Institute in Baltimore on 1990 Au-
gust 21-22. The workshop was organized on short notice and was held less than 2 months
after the spherical aberration in the Hubble Space Telescope's mirror was discovered. Con-
sequently, relatively little real HST data were available for restoration experiments, and
only a few of the workshop participants had access even to that data. Nevertheless, the
papers in this volume cover the issues, problems, and techniques quite well and give an
indication of directions for future research. Many of the participants have subsequently
obtained HST data and have been further studying the problem; we expect that this is

only the first in a series of workshops on this topic and that future workshops will have
more results of direct relevance to HST.

The papers in these proceedings focus entirely on computational methods for restoring
the resolution of HST images and spectra; however, at the workshop we did hear a progress
report from Robert A. Brown on proposals to repair the HST hardware. The final report of
the HST Strategy Panel has now been issued with conclusions from the work Bob described.
Even if HST is equipped with corrective optics for new and existing instruments in the
future (as we all hope), computer restoration techniques will still have a useful role to play
in the analysis of HST's diffraction-limited data; some examples which easily come to mind
are crowded stellar fields and the search for planets around nearby stars.

We have long expected that eventually sophisticated image processing techniques
would be applied to HST data; the presence of spherical aberration in HST has pushed us
into the restoration game with a vengeance! If there is a bright side to this problem, it is

that it may lead astronomers to become more knowledgable about the uses and limits of

image restoration methods for a wide range of astronomical data analysis problems.

The organizing committee for this meeting included Ethan Schreier, Chris Blades,
and Colin Norman as well as the undersigned. The workshop would never have happened
without the able assistance of Barbara Eller, who did a marvelous job of keeping things
from falling apart in the face of very short deadlines and a rapidly expanding list of

attendees.

Richard L. White
Ronald J. Allen
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The HST Spherical Aberration and Its Effects on Images
Richard L. White &: Christopher J. Burrows, STScI

The very first image taken a few weeks after the launch of the Hubble Space Telescope
(HST) showed evidence for spherical aberration in the HST optics. The results of the next
month of testing proved conclusively that the HST primary mirror has about 1/2 wave
RMS of spherical aberration (A = 5000 A).

The recently published paper by Burrows et al. (1991) gives a detailed description of
the HST spherical aberration. In this paper we briefly summarize the problem and discuss
its effects on HST imaging science.

The Problem
The HST primary mirror is too flat. The difference A between the designed mirror

surface and the actual surface varies as A = 2.3 //m (r/RY, where r is the radial distance
from the center of the mirror and i2 = 1.2 m is the radius of the mirror. This error
leads to an optical path length error twice as large; the minimum resulting wavefront
RMS error is 0.5 waves at A = 5000 A. This error has been determined independently from
measurements in orbit and from the flawed ground test equipment which was used to figure
the mirror. The measurements currently differ by 10%, but the difference seems to be due
to aberrations within the Wide Field/Planetary Camera used to make the measurments,
so there is relatively little uncertainty about the nature of problem.

Figure 1. Schematic optical diagram showing effect of spherical aberration on paraxial
and marginal rays. Desired surface shape is shown with dashed line.

As a consequence of this aberration, light reflected from the center of the HST primary
mirror ("paraxial" rays) does not focus at the same point as light reflected from the edge
of the mirror ("marginal" rays). The marginal focus is about 4 cm beyond the paraxial



Figure 2. Grey scale representation of a bright star obtained on 15 July 1990 with the

Planetary Camera. The field of view of this 200 pixels square sub-image is 8.6 x

8.6 arcsec.
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used for WFS and the distance between the reference source and the object
of interest.

In case of  good conditions and a bright,  nearby reference source, the
correction is  good and the resulting point  spread function (PSF) is  very
close to the diRraction limit. 

A good correction in the K-band corresponds to a SR larger than 30%. 

At shorter wavelengths (particularly in the J-band) or in the case of poor
conditions or a faint, distant reference source, the correction is only partial
- the Strehl ratio may only be a few percent.

Figure 3-1: Principle of Adaptive Optics

3.3. Infrared Observations with an AO system

Observing in the IR with an AO system is, in broad terms, very similar to
observing with other IR instruments. One has to deal with high and variable
backgrounds  and  modest  detector  cosmetics.   In  general,  the  IR
background,  particularly  at  longer  wavelengths,  is  higher  for  an  IR
instrument with an AO system, because of the additional optics in an AO
system.  Additionally,  the  classical  chop  and  nod  technique,  which  is
commonly used for the LW Flters in non-AO systems, works less well as the
DM introduces background Quctuations that do not cancel perfectly. This
does  not  degrade  L-band  observations  but  it  may  degrade  M-band
observations.  Given  the  relatively  small  Feld  of  view  of  CONICA,  it  is
possible to observe in the L-band without having to chop and nod. However,
the overheads are relatively large (typically 50-100%) because the sky has
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Fig. 1.—Active galactic nucleus of NGC 1068 observed at 20 mm. Left: Raw image is highly blurred by telescope diffraction. Right: Restored image using the
multiscale entropy method reveals the inner structure in the vicinity of the nucleus.

this was not the case for the spherically aberrated HST PSF.
Whenever the PSF “wings” are extended and irregular, decon-
volution offers a straightforward way to mitigate the effects of
this and to upgrade the core region of a point source. One usage
of deconvolution of continuing importance is in information
fusion from different detectors. For example, Faure et al. (2002)
deconvolve HST images when correlating with ground-based
observations. In Radomski et al. (2002), Keck data are decon-
volved for study with HST data. VLT data are deconvolved in
Burud et al. (2002), with other ESO and HST data used as
well. In planetary work, Coustenis et al. (2001) discuss CFHT
data as well as HST and other observations.
What emerges very clearly from this small sample—which

is in no way atypical—is that a major use of deconvolution is
to help in cross-correlating image and signal information.
An observed signal is never in pristine condition, and

improving it involves inverting the spoiling conditions, i.e.,
finding a solution to an inverse equation. Constraints related
to the type of signal we are dealing with play an important
role in the development of effective and efficient algorithms.
The use of constraints to provide for a stable and unique so-
lution is termed regularization. Examples of commonly used
constraints include a result image or signal that is nonnegative
everywhere, an excellent match to source profiles, necessary
statistical properties (Gaussian distribution, no correlation, etc.)
for residuals, and absence of specific artifacts (ringing around
sources, blockiness, etc.).
Our review opens in § 2 with a formalization of the problem.

In § 3, we consider the issue of regularization. In § 4, the
CLEAN method, which is central to radio astronomy, is de-
scribed. Bayesian modeling and inference in deconvolution is
reviewed in § 5. In § 6, we introduce wavelet-based methods
as used in deconvolution. These methods are based on multiple
resolution or scale. In §§ 7 and 8, important issues related to
resolution of the output result image are discussed. Section 7

is based on the fact that it is normally not worthwhile to target
an output result with better resolution than some limit, for
instance, a pixel size. In § 8, we investigate when, where, and
how missing information can be inferred to provide
superresolution.

2. THE DECONVOLUTION PROBLEM
Noise is the bane of the image analyst’s life. Without it we

could so much more easily rectify data, compress them, and
interpret them. Unfortunately, however, deconvolution becomes
a difficult problem due to the presence of noise in high-quality
or deep imaging.
Consider an image characterized by its intensity distribution

(the “data”) I, corresponding to the observation of a “real
image” O through an optical system. If the imaging system is
linear and shift-invariant, the relation between the data and the
image in the same coordinate frame is a convolution:

!" !"

I(x, y) p P(x# x , y# y )O(x , y )dx dy! ! 1 1 1 1 1 1
x p#" y p#"1 1

! N(x, y)

p (P ∗ O)(x, y)! N(x, y), (1)

where P is the PSF of the imaging system and N is additive
noise.
In Fourier space, we have

ˆˆ ˆ ˆI(u, v) p O(u, v)P(u, v)! N(u, v). (2)

We want to determine knowing I and P. This inverseO(x, y)
problem has led to a large amount of work, the main difficulties
being the existence of (1) a cutoff frequency of the PSF and
(2) the additive noise (see, for example, Cornwell 1989;
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In Fourier space:

We have observed data I (intensity distribution) corresponding to an 
observation of a “real image” O through an imaging system characterised 
by the PSF P and additive noise N.

Starck, Pantin & Murtagh 2002: Deconvolution in Astronomy

The Convolution Theorem: 
Convolution in either 
domain is equivalent 
to multiplication in the 
other.
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Katsaggelos 1993; Bertero & Boccacci 1998; Molina et al.
2001).
A solution can be obtained by computing the Fourier trans-

form of the deconvolved object by a simple division betweenÔ
the image and the PSF :ˆ ˆI P

ˆ ˆI(u, v) N(u, v)ˆ ˆÕ(u, v) p p O(u, v)! . (3)ˆ ˆP(u, v) P(u, v)

This method, sometimes called the Fourier-quotient method,
is very fast. We need to do only a Fourier transform and an
inverse Fourier transform. For frequencies close to the fre-
quency cutoff, the noise term becomes important, and the noise
is amplified. Therefore, in the presence of noise, this method
cannot be used.
Equation (1) is usually in practice an ill-posed problem. This

means that there is no unique and stable solution.
The diversity of algorithms to be looked at in the following

sections reflects different ways of recovering a “best” estimate
of the source. If one has good prior knowledge, then simple
modeling of PSF-convolved sources with a set of variable
parameters is often used. In fact, this is often a favored ap-
proach, in order to avoid deconvolution, even though its users
are unaware of the consequences of its spatially correlated
residuals. Lacking specific source information, one then relies
on general properties, which have been referred to in § 1. The
algorithms described in our review approach these issues in
different ways.
With linear regularized methods (§ 3) we use a smoothing/

sharpening trade-off. CLEAN assumes our objects are point
sources. We discuss the powerful Bayesian methodology in
terms of different noise models that can be applicable. Maxi-
mum entropy makes a very specific assumption about source
structure, but in at least its traditional formulations it was poor
at addressing the expected properties of the residuals produced
when the estimated source was compared to the observations.
Some further work is reviewed that models planetary images
or extended objects. So far, all of these methods work, usually
iteratively, on the given data.
The story of § 6 is an answer to the question: Where and

how do we introduce resolution scale into the methods we
review in § 3, 4, and 5, and what are the benefits of doing
this?
Some varied directions that deconvolution can take are as

follows:

1. Superresolution: object spatial frequency information out-
side the spatial bandwidth of the image formation system is
recovered.
2. Blind deconvolution: the PSF P is unknown.
3. Myopic deconvolution: the PSF P is partially known.
4. Image reconstruction: an image is formed from a series

of projections (computed tomography, positron emission
tomography [PET], and so on).

We will discuss only the deconvolution and superresolution
problems in this paper.
In the deconvolution problem, the PSF is assumed to be

known. In practice, we have to construct a PSF from the data
or from an optical model of the imaging telescope. In astron-
omy, the data may contain stars, or one can point toward a
reference star in order to reconstruct a PSF. The drawback is
the “degradation” of this PSF because of unavoidable noise or
spurious instrument signatures in the data. So, when recon-
structing a PSF from experimental data, one has to reduce very
carefully the images used (background removal, for instance)
or otherwise any spurious feature in the PSF would be repeated
around each object in the deconvolved image. Another problem
arises when the PSF is highly variable with time, as is the case
for adaptive optics images. This usually means that the PSF
estimated when observing a reference star, after or before the
observation of the scientific target, has small differences from
a perfect PSF. In this particular case, one has to turn toward
myopic deconvolution methods (Christou et al. 1999) in
which the PSF is also estimated in the iterative algorithm
using a first guess deduced from observations of reference
stars.
Another approach consists of constructing a synthetic PSF.

Several studies (Buonanno et al. 1983; Moffat 1969; Djorgov-
ski 1983; Molina et al. 1992) have suggested a radially sym-
metric approximation to the PSF:

"b
2r

P(r) ∝ 1! . (4)2( )R

The parameters b and R are obtained by fitting the model with
stars contained in the data.

3. LINEAR REGULARIZED METHODS
It is easy to verify that the minimization of k I(x, y)"

, where the asterisk means convolution,2P(x, y) ∗ O(x, y)k
leads to the least-squares solution:

∗ˆ ˆP (u, v)I(u, v)ˆ̃O(u, v) p , (5)2ˆd P(u, v)F

which is defined only if (the Fourier transform of theP̂(u, v)
PSF) is different from zero. A tilde indicates an estimate. The
problem is generally ill-posed and we need to introduce reg-
ularization in order to find a unique and stable solution.
Tikhonov regularization (Tikhonov et al. 1987) consists of

minimizing the term

J (O) pk I(x, y)" (P ∗ O)(x, y) k !l k H ∗ O k , (6)T

where H corresponds to a high-pass filter. This criterion con-
tains two terms. The first, ,2kI(x, y)" P(x, y) ∗ O(x, y)k
expresses fidelity to the data , and the second,I(x, y)

This method, sometimes called the Fourier-quotient method, is very fast. We need 
to do only a Fourier transform and an inverse Fourier transform. However, in the 
presence of noise, this method cannot be used. 
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F. Courbin et al.: HE 0435-1223: time delays, dynamics and baryonic fraction of the lens. IX.

Table 1. Summary of the optical monitoring data.

Telescope Camera FoV Pixel Period of observation #obs. Exp. time Seeing Sampling
Euler C2 11′ × 11′ 0.′′344 Jan. 2004–Mar. 2010 301 5 × 360 s 1.′′37 6 days
Mercator MEROPE 6.5′ × 6.5′ 0.′′190 Sep. 2004–Dec. 2008 104 5 × 360 s 1.′′59 11 days
Maidanak SITE 8.9′ × 3.5′ 0.′′266 Oct. 2004–Jul. 2006 26 10 × 180 s 1.′′31 16 days
Maidanak SI 18.1′ × 18.1′ 0.′′266 Aug. 2006–Jan. 2007 8 6 × 300 s 1.′′31 16 days
SMARTS ANDICAM 10′ × 10′ 0.′′300 Aug. 2003–Apr. 2005 136 3 × 300 s ≤1.′′80 4 days
TOTAL – – – Aug. 2003–Mar. 2010 575 242.5 h – 3.2 days

Notes. The temporal sampling is the mean number of days between two consecutive observations.
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Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 4. Left: combination of the four original HST/NIC2 F160W frames of HE 0435-1223. The field of view is 9 × 9 arcsec. Middle: deconvolved
image, where the lensing galaxy is modelled as a de Vaucouleurs profile (see text). The nearest galaxy on the plane of the sky, G22, is also
indicated. Right: residual map in units of the noise. The colour scale ranges from −4σ (white) to +4σ (black).

Table 2. Relative astrometry of HE 0435-1223 as derived from the simultaneous deconvolution of all NIC2 frames.

This work Morgan et al. (2005) Kochanek et al. (2006)
ID ∆α (′′) ∆δ (′′) Mag (F160W) ∆α (′′) ∆δ (′′) ∆α (′′) ∆δ (′′)
A 0. 0. 17.20 ± 0.01 0. 0. 0. 0.
B –1.4743 ± 0.0004 +0.5518 ± 0.0006 17.69 ± 0.01 –1.477 ± 0.002 +0.553 ± 0.002 –1.476 ± 0.003 +0.553 ± 0.001
C –2.4664 ± 0.0003 –0.6022 ± 0.0013 17.69 ± 0.02 –2.469 ± 0.002 –0.603 ± 0.002 –2.467 ± 0.002 –0.603 ± 0.004
D –0.9378 ± 0.0005 –1.6160 ± 0.0006 17.95 ± 0.01 –0.938 ± 0.002 –1.615 ± 0.002 –0.939 ± 0.002 –1.614 ± 0.001
G –1.1706 ± 0.0030 –0.5665 ± 0.0004 16.20 ± 0.12 –1.169 ± 0.002 –0.572 ± 0.002 –1.165 ± 0.002 –0.573 ± 0.002

Notes. The 1σ error bars are the internal errors after deconvolution. Additional 2-mas systematic errors must be added to these (see text). The
magnitudes are in the Vega system. For comparison we show the results from Morgan et al. (2005) using HST/ACS images and from Kochanek
et al. (2006) using HST/NIC2 images.

Table 3. Shape parameters for the lensing galaxy in HE 0435-1223.

PA (◦) Ellipticity aeff (′′) beff (′′) reff (′′)
174.8 (1.7) 0.09 (0.01) 1.57 (0.09) 1.43 (0.08) 1.50 (0.08)

Notes. The position angle (PA) is measured positive east of north. The
1σ error bars (internal errors) are given in parenthesis.

minimised the residual microlensing variations to be modelled
in the 3 others. This is best verified with component B as a ref-
erence.

With B as a reference light curve, we note that microlensing
in C and D remains smooth and can therefore be modelled with a
low-order polynomial drawn over the full length of the monitor-
ing. However, A contains higher frequency variations that need
to be accounted for in each season individually, as illustrated
in Fig. 5. In doing this, we obtain fairly good fits to the light
curves, as shown in the residual signal. To quantify the quality of
these residuals, we applied the so-called one-sample runs test of
randomness, a statistical test to estimate whether successive rea-
lizations of a random variable are independent or not. In practice
the test was applied to a sequence of residuals to decide whether
a model is a good representation of the data. For most seasons
in our curves the number of runs was between 1σ and 3σ lower
than the value expected for independent random residuals. Thus,
although our microlensing model is not fully representative of
the real signal, the deviations from the data points remain small.

We tested the robustness of our curve-shifting method in sev-
eral ways. First, we modelled the microlensing variations using

polynomial fits of different orders. Second, we fitted these poly-
nomials either across each individual season or across groups of
seasons. Finally, we masked the seasons with the worst residual
signal (Fig. 5). All these changes had only a negligible impact
on the time delay measurements. We note that this is not the
case when considering only two or three seasons of data, which
shows the importance of a long-term monitoring with good tem-
poral sampling.

4.3. Final results

Our results are summarised in Table 4 and are compared with
the previous measurements of Kochanek et al. (2006), who
have used pure a polynomial fit to the light curves and two
seasons of monitoring. Using the same data but with our modi-
fied dispersion technique, we obtained very similar time delays
as Kochanek et al. (2006), but larger error bars. We prefer keep-
ing a minimum possible number of degrees of freedom (e.g.,
in the polynomial order used to represent microlensing), in ac-
cordance with the Occam’s razor principle, even to the cost of
apparently larger formal error bars.

We also note that Kochanek et al. (2006) give their time de-
lays with respect to A, which, with seven seasons of data, turns
out to be the most affected by microlensing. As a consequence
the error bars on these time delays are dominated by residual mi-
crolensing rather than by statistical errors. The time delays used
in the rest of our analysis are therefore measured relative to B.

Finally, we used the mean values of our microlensing cor-
rections to estimate the macrolensing R-band flux ratios between
the four quasar images, assuming that no long-term microlensing
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Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 4. Left: combination of the four original HST/NIC2 F160W frames of HE 0435-1223. The field of view is 9 × 9 arcsec. Middle: deconvolved
image, where the lensing galaxy is modelled as a de Vaucouleurs profile (see text). The nearest galaxy on the plane of the sky, G22, is also
indicated. Right: residual map in units of the noise. The colour scale ranges from −4σ (white) to +4σ (black).

Table 2. Relative astrometry of HE 0435-1223 as derived from the simultaneous deconvolution of all NIC2 frames.

This work Morgan et al. (2005) Kochanek et al. (2006)
ID ∆α (′′) ∆δ (′′) Mag (F160W) ∆α (′′) ∆δ (′′) ∆α (′′) ∆δ (′′)
A 0. 0. 17.20 ± 0.01 0. 0. 0. 0.
B –1.4743 ± 0.0004 +0.5518 ± 0.0006 17.69 ± 0.01 –1.477 ± 0.002 +0.553 ± 0.002 –1.476 ± 0.003 +0.553 ± 0.001
C –2.4664 ± 0.0003 –0.6022 ± 0.0013 17.69 ± 0.02 –2.469 ± 0.002 –0.603 ± 0.002 –2.467 ± 0.002 –0.603 ± 0.004
D –0.9378 ± 0.0005 –1.6160 ± 0.0006 17.95 ± 0.01 –0.938 ± 0.002 –1.615 ± 0.002 –0.939 ± 0.002 –1.614 ± 0.001
G –1.1706 ± 0.0030 –0.5665 ± 0.0004 16.20 ± 0.12 –1.169 ± 0.002 –0.572 ± 0.002 –1.165 ± 0.002 –0.573 ± 0.002

Notes. The 1σ error bars are the internal errors after deconvolution. Additional 2-mas systematic errors must be added to these (see text). The
magnitudes are in the Vega system. For comparison we show the results from Morgan et al. (2005) using HST/ACS images and from Kochanek
et al. (2006) using HST/NIC2 images.

Table 3. Shape parameters for the lensing galaxy in HE 0435-1223.

PA (◦) Ellipticity aeff (′′) beff (′′) reff (′′)
174.8 (1.7) 0.09 (0.01) 1.57 (0.09) 1.43 (0.08) 1.50 (0.08)

Notes. The position angle (PA) is measured positive east of north. The
1σ error bars (internal errors) are given in parenthesis.

minimised the residual microlensing variations to be modelled
in the 3 others. This is best verified with component B as a ref-
erence.

With B as a reference light curve, we note that microlensing
in C and D remains smooth and can therefore be modelled with a
low-order polynomial drawn over the full length of the monitor-
ing. However, A contains higher frequency variations that need
to be accounted for in each season individually, as illustrated
in Fig. 5. In doing this, we obtain fairly good fits to the light
curves, as shown in the residual signal. To quantify the quality of
these residuals, we applied the so-called one-sample runs test of
randomness, a statistical test to estimate whether successive rea-
lizations of a random variable are independent or not. In practice
the test was applied to a sequence of residuals to decide whether
a model is a good representation of the data. For most seasons
in our curves the number of runs was between 1σ and 3σ lower
than the value expected for independent random residuals. Thus,
although our microlensing model is not fully representative of
the real signal, the deviations from the data points remain small.

We tested the robustness of our curve-shifting method in sev-
eral ways. First, we modelled the microlensing variations using

polynomial fits of different orders. Second, we fitted these poly-
nomials either across each individual season or across groups of
seasons. Finally, we masked the seasons with the worst residual
signal (Fig. 5). All these changes had only a negligible impact
on the time delay measurements. We note that this is not the
case when considering only two or three seasons of data, which
shows the importance of a long-term monitoring with good tem-
poral sampling.

4.3. Final results

Our results are summarised in Table 4 and are compared with
the previous measurements of Kochanek et al. (2006), who
have used pure a polynomial fit to the light curves and two
seasons of monitoring. Using the same data but with our modi-
fied dispersion technique, we obtained very similar time delays
as Kochanek et al. (2006), but larger error bars. We prefer keep-
ing a minimum possible number of degrees of freedom (e.g.,
in the polynomial order used to represent microlensing), in ac-
cordance with the Occam’s razor principle, even to the cost of
apparently larger formal error bars.

We also note that Kochanek et al. (2006) give their time de-
lays with respect to A, which, with seven seasons of data, turns
out to be the most affected by microlensing. As a consequence
the error bars on these time delays are dominated by residual mi-
crolensing rather than by statistical errors. The time delays used
in the rest of our analysis are therefore measured relative to B.

Finally, we used the mean values of our microlensing cor-
rections to estimate the macrolensing R-band flux ratios between
the four quasar images, assuming that no long-term microlensing
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Fig. 2. Result from the simultaneous deconvolution of the ground-based frames. G is the lensing galaxy and G22 (Morgan et al. 2005) is its closest
neighbour on the plane of the sky. The grey scale in the deconvolved image is set to display all light level above 3 × σsky. The FWHM resolution
of the deconvolved image is 0.′′34.

images and the lensing galaxy and to constrain the light distri-
bution in the lensing galaxy. The data are part of the CASTLES
project (Cfa-Arizona Space Telescope LEns Survey) and were
acquired in October 2004 (PI: C. S. Kochanek) with the
camera 2 of NICMOS, the Near-Infrared Camera and Multi-
Object Spectrometer. They consist of four dithered frames taken
through the F160W filter (H-band) in the MULTIACCUM mode
with 19 samples and calibrated by CALNICA, the HST image
reduction pipeline. The total exposure time amounts to approxi-
mately 44 min and the pixel scale is 0.′′075652.

The MCS deconvolution algorithm was used to combine the
four NIC2 frames into a deep sharp IR image. We followed
the iterative technique described in Chantry et al. (2010) and
Chantry & Magain (2007), which allowed us to build a PSF in
the absence of a stellar image in the field of view. The method
can be summarised as follows. First, we estimated the PSF us-
ing Tiny Tim software (Krist & Hook 2004) and carried out
the simultaneous deconvolution of the four F160W frames using
a modified version of the MCS software (Magain et al. 2007).
This produces a first approximation of the extended channel of
the deconvolved image, i.e., the lensing galaxy and the lensed
quasar host galaxy. We reconvolved the latter by the PSF and
subtracted it from the original data. A new estimate of the PSF
was built on the new image that now contained only the quasar
images. The process was repeated until the residual image was
satisfactory (for more details see Chantry et al. 2010). Figure 4
shows the result. In this image the pixel size is half that of the
original data and the resolution 0.′′075 (FWHM), unveiling an
almost full Einstein ring.

In the final deconvolved image, the lensing galaxy was mod-
elled analytically rather than numerically to minimise the num-
ber of degrees of freedom. We found that the best-fit profile
is an elliptical de Vaucouleurs with the parameters as given
in Table 3. The astrometry of the quasar images relative to
the lensing galaxy, corrected for the known distortions of the
NIC2 camera and for the difference of pixel scale between the x
and y directions is summarised in Table 2. Based on our previ-
ous work using deconvolution of NICMOS images (Chantry &
Magain 2007), we estimate that the total error bars, accounting
for residual correction of the distortions amounts to 2 mas. Our
results agree well with previous measurements from HST/ACS

(Morgan et al. 2005) or HST/NIC2 imaging (Kochanek et al.
2006), also shown for comparison in Table 2.

4. Time delay measurement

4.1. Curve shifting method

Our method to measure the time delays is based on the disper-
sion technique of Pelt et al. (1996): the light curves are shifted in
time and in magnitude to minimise a global dispersion function.
In addition, the light curves are distorted on long time scales
to account for slow microlensing variations. This was made by
adding low-order polynomials to either the full curves or to spe-
cific observing seasons.

Pelt et al. (1996) has defined several dispersion statistics be-
tween pairs of light curves. We implemented a dispersion es-
timate similar to D2

3 (see Eq. (8) of Pelt et al. 1996), which
performed a linear interpolation between points of one of the
curves over a maximum range of 30 days. In the case of four
light curves, we defined a total dispersion that is the sum of the
dispersions computed using the 12 possible permutations of two
curves among four. Each pair was considered twice so to avoid
the arbitrary choice of a reference light curve. The photomet-
ric error bars were taken into account to weight the influence of
the data points in the dispersion. We then minimised the total
dispersion by modifying the time delays and the microlensing
polynomials.

4.2. Microlensing and influence on the time delay

Simulated light curves that mimic the observed data were used to
estimate the robustness of the method. The error bars on the time
delays were calculated using Monte Carlo simulations, i.e., re-
distributing the magnitudes of the data points according to their
photometric error bars. The width of the resulting time delay
distributions gives us the 1σ error bars.

Because of microlensing we do not have access to the in-
trinsic variations of the quasar. We represent microlensing in
three of the light curves as a relative variation with respect to
the fourth light curve, taken as a reference. We tested each of
the four light curves in turn as a reference and kept the one that
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Table 1. Summary of the optical monitoring data.

Telescope Camera FoV Pixel Period of observation #obs. Exp. time Seeing Sampling
Euler C2 11′ × 11′ 0.′′344 Jan. 2004–Mar. 2010 301 5 × 360 s 1.′′37 6 days
Mercator MEROPE 6.5′ × 6.5′ 0.′′190 Sep. 2004–Dec. 2008 104 5 × 360 s 1.′′59 11 days
Maidanak SITE 8.9′ × 3.5′ 0.′′266 Oct. 2004–Jul. 2006 26 10 × 180 s 1.′′31 16 days
Maidanak SI 18.1′ × 18.1′ 0.′′266 Aug. 2006–Jan. 2007 8 6 × 300 s 1.′′31 16 days
SMARTS ANDICAM 10′ × 10′ 0.′′300 Aug. 2003–Apr. 2005 136 3 × 300 s ≤1.′′80 4 days
TOTAL – – – Aug. 2003–Mar. 2010 575 242.5 h – 3.2 days

Notes. The temporal sampling is the mean number of days between two consecutive observations.
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Fig. 1. Part of the field of view of the 1.2 m Swiss Euler telescope, with HE 0435-1223 visible in the centre. The four PSF stars used for
deconvolution purposes and the two reference stars used to carry out the flux calibration are indicated.

given the PSFs and the noise maps of the individual frames. In
doing this, the intensities of the point sources are allowed to vary
from one frame to the next while the smooth background, which
includes the lensing galaxy, is held constant in all frames. The
result of the process is shown in Fig. 2, where the point sources
are labelled as in Wisotzki et al. (2002). Prior information on the
object to be deconvolved can be used to achieve the best possi-
ble results. In the case of HE 0435-1223 the relative positions
of the point sources are fixed to the HST astrometry obtained in
Sect. 3.

Figure 3 shows the deconvolution light curves obtained for
each quasar image of HE 0435-1223, where the 1σ error bars ac-
count both for the statistical and systematic errors. The statistical

part of the error was taken as the dispersion between the pho-
tometric points taken during each night. The systematic errors
were estimated by carrying out the simultaneous deconvolution
of reference stars in the vicinity of HE 0435-1223.

Finally, a small scaling factor was applied to the light
curves of all telescopes, including the published light curves of
Kochanek et al. (2006), to match the Euler photometry. These
shifts are all smaller than 0.03 mag.

3. HST NICMOS2 imaging

We used deep near-IR HST images of HE 0435-1223 to de-
rive the best possible relative astrometry between the quasar
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Fig. 2. Result from the simultaneous deconvolution of the ground-based frames. G is the lensing galaxy and G22 (Morgan et al. 2005) is its closest
neighbour on the plane of the sky. The grey scale in the deconvolved image is set to display all light level above 3 × σsky. The FWHM resolution
of the deconvolved image is 0.′′34.

images and the lensing galaxy and to constrain the light distri-
bution in the lensing galaxy. The data are part of the CASTLES
project (Cfa-Arizona Space Telescope LEns Survey) and were
acquired in October 2004 (PI: C. S. Kochanek) with the
camera 2 of NICMOS, the Near-Infrared Camera and Multi-
Object Spectrometer. They consist of four dithered frames taken
through the F160W filter (H-band) in the MULTIACCUM mode
with 19 samples and calibrated by CALNICA, the HST image
reduction pipeline. The total exposure time amounts to approxi-
mately 44 min and the pixel scale is 0.′′075652.

The MCS deconvolution algorithm was used to combine the
four NIC2 frames into a deep sharp IR image. We followed
the iterative technique described in Chantry et al. (2010) and
Chantry & Magain (2007), which allowed us to build a PSF in
the absence of a stellar image in the field of view. The method
can be summarised as follows. First, we estimated the PSF us-
ing Tiny Tim software (Krist & Hook 2004) and carried out
the simultaneous deconvolution of the four F160W frames using
a modified version of the MCS software (Magain et al. 2007).
This produces a first approximation of the extended channel of
the deconvolved image, i.e., the lensing galaxy and the lensed
quasar host galaxy. We reconvolved the latter by the PSF and
subtracted it from the original data. A new estimate of the PSF
was built on the new image that now contained only the quasar
images. The process was repeated until the residual image was
satisfactory (for more details see Chantry et al. 2010). Figure 4
shows the result. In this image the pixel size is half that of the
original data and the resolution 0.′′075 (FWHM), unveiling an
almost full Einstein ring.

In the final deconvolved image, the lensing galaxy was mod-
elled analytically rather than numerically to minimise the num-
ber of degrees of freedom. We found that the best-fit profile
is an elliptical de Vaucouleurs with the parameters as given
in Table 3. The astrometry of the quasar images relative to
the lensing galaxy, corrected for the known distortions of the
NIC2 camera and for the difference of pixel scale between the x
and y directions is summarised in Table 2. Based on our previ-
ous work using deconvolution of NICMOS images (Chantry &
Magain 2007), we estimate that the total error bars, accounting
for residual correction of the distortions amounts to 2 mas. Our
results agree well with previous measurements from HST/ACS

(Morgan et al. 2005) or HST/NIC2 imaging (Kochanek et al.
2006), also shown for comparison in Table 2.

4. Time delay measurement

4.1. Curve shifting method

Our method to measure the time delays is based on the disper-
sion technique of Pelt et al. (1996): the light curves are shifted in
time and in magnitude to minimise a global dispersion function.
In addition, the light curves are distorted on long time scales
to account for slow microlensing variations. This was made by
adding low-order polynomials to either the full curves or to spe-
cific observing seasons.

Pelt et al. (1996) has defined several dispersion statistics be-
tween pairs of light curves. We implemented a dispersion es-
timate similar to D2

3 (see Eq. (8) of Pelt et al. 1996), which
performed a linear interpolation between points of one of the
curves over a maximum range of 30 days. In the case of four
light curves, we defined a total dispersion that is the sum of the
dispersions computed using the 12 possible permutations of two
curves among four. Each pair was considered twice so to avoid
the arbitrary choice of a reference light curve. The photomet-
ric error bars were taken into account to weight the influence of
the data points in the dispersion. We then minimised the total
dispersion by modifying the time delays and the microlensing
polynomials.

4.2. Microlensing and influence on the time delay

Simulated light curves that mimic the observed data were used to
estimate the robustness of the method. The error bars on the time
delays were calculated using Monte Carlo simulations, i.e., re-
distributing the magnitudes of the data points according to their
photometric error bars. The width of the resulting time delay
distributions gives us the 1σ error bars.

Because of microlensing we do not have access to the in-
trinsic variations of the quasar. We represent microlensing in
three of the light curves as a relative variation with respect to
the fourth light curve, taken as a reference. We tested each of
the four light curves in turn as a reference and kept the one that
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F. Courbin et al.: HE 0435-1223: time delays, dynamics and baryonic fraction of the lens. IX.

Fig. 3. R-band light curves of the four lensed images of HE 0435-1223 from December 2003 to April 2010. The magnitudes are given in relative
units as a function of the Heliocentric Julian Day (HJD), along with their total 1σ error bars. These light curves are available in tabular form at
the CDS.
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Astronomical spectroscopy



Spectroscopic observations 
● Determine the flux density as a function of wavelength (spectral energy distribution, 
spectral lines, physical conditions, velocities etc.) 
● Use a mask with a narrow aperture (slit) to cut the 2D image to 1D 
● Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum  
● Spectrographs use an imaging device (CCD) to record the dispersed light 

 slit

x

x

λ
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Viivojen tiheys on yleensä hyvin suuri, noin 100–1000 viivaa millimetrillä.
Suuren viivatiheyden vuoksi hilojen valmistus on hyvin vaikeaa ja kallista,
joten uurtamalla tai holografisesti tehtyjä hiloja käytetään yleensä
muotteina epoksista valetuille hiloille, jolloin valmistuskustannuksia voidaan
huomattavasti pienentää.
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m=0

m=−1

m=1

m=2

m=3

Heijastushila.
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Hilalle osuvan ja siitä diffraktoituneen valon tulo- ja lähtökulmien välillä on
yhteys:

a(sin↵� sin�) = m� m = . . . ,�1, 0, 1, . . .

Diffraktoitunut valo hajoaa siis eri kertalukuihin, joista kutakin vastaa tietty
m. Erityisesti on huomattava kertaluku m = 0, jossa kaikki aallonpituudet
diffraktoituvat samaan suuntaan, ts. ei tapahdu dispersiota. Suurin osa
valosta menee siis hukkaan, mikä on epätoivottavaa silloin kun havaitaan
himmeitä kohteita.
Tämän vuoksi spektrograafeissa käytettävät hilat uurretaan kuvan
mukaisesti (ns. blazed grating). Voidaan osoittaa, että mikäli kuvan
tilanteessa ✓ asetetaan sellaiseen kulmaan, että diffraktoitunut valo tietyssä
kertaluvussa m0 ja tietyllä aallonpituudella �0 kulkee samaan suuntaan kuin
geometrisessa heijastuksessa, saavutetaan hilan maksimitehokkuus
aallonpituudella �0 ja 60–70 % valosta menee kertalukuun m0.
Aallonpituuden �0 ylä- ja alapuolella hilan tehokkuus laskee nopeasti, joten
tyypillisen hilan hyödyllinen aallonpituusalue on yleensä noin 300–400 nm.
Spektrometrien manuaaleissa kertaluku m0 ja aallonpituus �0 eli ns. blaze
wavelength on usein ilmoitettu kullekin hilalle.

() 1. lokakuuta 2008 11 / 41

α = angle of incidence 
β = angle of diffraction 
m = order of diffraction 
λ = wavelength 
a = grating constant 
(distance between successive grooves)
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Notes: 
m = 0: all wavelengths diffract in the same direction 
(no spectrum formed!)  

Spectra of different orders can overlap causing  
so called second order contamination (use filter!)

α = angle of incidence 
β = angle of diffraction 
m = order of diffraction 
λ = wavelength 
a = grating constant 
(distance between successive grooves)



Spectroscopic observations
Spectral resolution R = N m 
where m is the diffraction order and N the total number of grooves 

• Resolving power of a spectrograph R = λ / Δλ = c / Δvelocity 
•  For example 

• Low-resolution R = 500 at 650nm gives Δλ = 1.3nm (600 km/s) 
• High-resolution T = 50 000 gives Δλ = 0.013nm (6 km/s) 

FWHM



Data reductions: spectroscopy 
● Reductions in 2D 

● Correct for CCD bias (and dark current) 
● Correct for detector non-uniformity (and fringes!) – flat fielding 
● Subtract background emission (from sky, host galaxy etc.) 
● Extract the spectrum 

● Reductions in 1D 
● Wavelength calibration  

● Use a standard emission line source (arc lamp) 
● Spectrophotometric calibration 

● Use a well-characterised spectrophotometric standard star



λ400 nm 820 nm

a)

b)

c)

d)

e)

BL Lac -kohteen RGB1848+427 spektri ja tarvittavat kalibrointikuvat: a)
kohteen spektri, b) standarditähden spektri, c) kalibrointilampun spektri, d)
bias -kuva, e) flat-field -kuva. Kuvien intensiteettiskaala ei ole sama.
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object

spectrophotometric standard star

arc lamp for wavelength calibration

bias frame

flat field frame

Spectroscopic data



a)
x

y

b)

c)
800100012001400 x [pix.]

d)
400 500 600 700 λ [nm]

Spektriredusoinnin välivaiheita: a) raaka spektri, b) taustaviivat vähennetty,
c) kalibroimaton 1-ulotteinen spektri, d) kalibroitu spektri.
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raw object

Spectroscopic data
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Taustataivaan spektri Calar Alton observatoriolla Espanjassa matalan
resoluution (R ⇠ 600) spektrometrillä havaittuna. Tähdellä merkityt viivat
ovat valosaasteen aiheuttamia, muut viivat syntyvät ilmakehässä.
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raw object

after subtraction of sky background

after extraction

extracted background sky spectrum



Extraction of the spectrum
● Selecting your extraction aperture 
● Fitting the trace of the spectrum 
● Fitting the background on both sides of your target  
● Extracting the spectrum 



Wavelength calibration
● Identifying the detected arclamp emission lines in observed spectrum 
● Measuring their accurate positions 
● Fitting a dispersion solution for the spectrum



Flux calibration
● Determine the sensitivity function for the observation 
● Apply the flux calibration and atmospheric extinction correction for 

your spectrum
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THE TRANSIENT UNIVERSE SUPERNOVAETHE TRANSIENT UNIVERSE SUPERNOVAE

equivalently, more distant – than expected in 
a flat, matter-dominated universe. This indi-
cated that the rate of expansion of the universe 
was speeding up, and that the substance of the 
universe was dominated by a “dark energy” 
responsible for 70–75% of its energy (Riess et 
al. 1998, Perlmutter et al. 1999). This result 
later won the 2011 Nobel Prize in Physics, and 
has forever changed our understanding of the 
universe.

New sky surveys continue to find supernovae 
at an extraordinary rate, partly motivated by 
trying to understand dark energy and partly 
motivated by an innate curiosity as to how stars 
explode. Cheaper, larger CCDs and the birth 
of large-scale computing have made the task of 
surveying large areas of sky significantly simpler 
and quicker. Even as recently as the turn of the 
last century, supernovae were only discovered 
at the rate of a few tens per year. Modern sur-
veys are enabling events to be located with a 
frequency that is almost an order of magnitude 
larger – 2012 saw more than 2000 spectroscopi-
cally confirmed supernovae announced, and 
2013 is on track to better this (figure 2).

Much of this survey work has been performed 
on dedicated smaller telescopes used with large 
format cameras. Prime examples include:
●  The Palomar Transient Factory (PTF), using 
the Palomar 48-inch Schmidt telescope refur-
bished with a large-format CCD camera
●  Pan-STARRS, using a purpose-built 1.8 m 
telescope
●  The Catalina Real-Time Transient Survey 
(CRTS), using three dedicated telescopes in the 
northern and southern hemispheres. 

Other surveys, such as the La Silla Quest Vari-
ability Survey on the ESO 1 m Schmidt telescope 
on La Silla, and the SkyMapper survey at Siding 
Spring, are also now coming online.

This rapid discovery rate has dramatically 
improved our understanding of supernova phys-
ics, but, as might be expected, has also raised 
more questions to be answered. Here we high-
light recent progress on two fronts: finding new 
ways in which stars can explode, and under-
standing the progenitor stars that make the 
cosmologically important Type Ia supernovae.

An explosion of supernova types
In 1941, Minkowski proposed the first observa-
tional classification of supernova into the now 
familiar Type I (no hydrogen lines in the spectra) 
and Type II (with hydrogen lines) events. This 
basic classification scheme survives today, but 
has acquired ever more complex subdivisions 
(Ia, Ib, Ic, IIb, IIn, Ia-CSM, Iax, etc) to accom-
modate the large variety of supernova types 
now known. This means that the classification 
of supernovae sometimes seems to require the 
attention of a black-belt expert – and even then, 
similar objects can be classified in subtly differ-
ent ways by experienced observers.

Historically, supernovae were believed to origi-
nate in two physically distinct ways. The first 
group results from the thermonuclear destruc-
tion of a carbon–oxygen white dwarf star, as 
it accretes or gains material from a companion 
until carbon burning is ignited at or near its core. 
These are the Type Ia supernovae (SNe Ia), with 
distinctive features of silicon (a product of car-
bon burning) in the spectra. The second group 
forms through the gravitational core-collapse of 
a massive star, more than eight times the mass of 
the Sun, triggered by iron photo-disintegration 
and the consequent loss of support in the star’s 
core. This mechanism is believed to produce 
nearly all the other spectral types.

Once the progenitor star has exploded, there 

must also be some way of generating electro-
magnetic radiation so the supernova can be 
detected. There are three basic contributors to 
the radiation, as presently understood. The first, 
important in nearly all supernova types, is from 
the radioactive decay of unstable elements syn-
thesized in the explosive nucleosynthesis. The 
most important is 56Ni, which then decays into 
56Co and eventually into stable 56Fe. This decay 
generates gamma-rays, which are trapped in the 
ejecta and thermalize it so that it glows. This 
mechanism is the only power source for SNe Ia – 
indeed, without radioactive 56Ni, SNe Ia would 
never be seen. A second source is the release 
of internal energy deposited by the explosion 
via photon diffusion. A final contributor is the 

2: The discovery rate of approximately 14 000 extragalactic supernovae located over the last 
century, complete up to 31 August 2013. This includes all supernovae announced via IAU circulars 
and Astronomer’s Telegrams, as well as those discovered by the Palomar Transient Factory, the 
Supernova Legacy Survey, and Pan-STARRS. Several key dates and observations are highlighted 
in the figures. The top panel shows an overview of the last 130 years, while the bottom panel 
focuses on the last 20 years and the future.
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“The average frequency of occurrence of supernovae 
is about one supernova per extra-galactic nebula 
per six hundred years”, Zwicky (1938)

Sullivan+2013



Rudolph Minkowski (1895-1976)

“Spectroscopic observations indicate at least two 
types of supernovae. Nine objects form an 
extremely homogeneous group provisionally 
called type I” 

Rudolph Minkowski (1941)



Supernova types
No hydrogen Hydrogen lines

 Type I  Type II

Si Si

Ia Ic II-P, II-L, IIb, IIn

He He
Light curve, spectral 
lines

Thermonuclear Core-collapse
White dwarf Wolf Rayet + 

binaries Supergiants
Ib



Supernova types
Early 'photosperic' phase  Late time 'nebular' phase

Pastorello+ 2007
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2013fc

Kangas,SM+2016

offset = 3.5” (1.4 kpc), AV ~ 3

Classified by PESSTO (ESO NTT) at ~17 days 
post explosion (Kangas et al. 2013)

Hα + [N II]

Na I D
atm

Circumnuclear SN optical follow-up:  
SN2013fc - a luminous type IIL in the circumnuclear ring of a LIRG
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                         Traditional pointed SN searches (e.g. LOSS) taken over by new wide field surveys 
 Pan-STARRS Survey for Transients (PSST) 

~6000 sq degrees per night from Haleakala, Hawaii 
 Catalina Real-time Transient Survey (CRTS) 

Observes 33 000 sq degrees from Arizona and Siding Spring, Australia  
 All-Sky Automated Survey for SuperNovae (ASAS-SN) 

Observes 20 000 sq degrees from Haleakala, Hawaii and Cerro Tololo, Chile 
  
 

Surveys for astrophysical transients going all-sky !

PS15bsn 
13 Aug 2015



GOTO Phase I



GOTO concept  
Core GW-EM science
●Robotic, rapid-response system

●Deep enough to probe EM signatures of 
NS mergers within ~150 Mpc

●Wide enough to cover localisation 
uncertainty and have recent observations 
of visible sky
 
●Scalable and flexible design by deploying 
arrays of small (40cm) telescopes, each 
with a ~5 deg2 FoV
 
●Adaptable survey speed, depth, FoV 
footprint and filter coverage as GW 
detectors evolve as well as our 
understanding of EM counterparts

The primary GW-EM sky survey mode will 
have multiple secondary science gains…
 



GW-EM hunters (North)

GOTO

ZTF(2018- ) 
•47 deg2 FoV 
•~121cm telescope 
•20.5 mag 
•Palomar 

ATLAS (2015- ) 
•2 x 30 deg2 FoV 
•2 x 50cm telescopes 
•~20.2-20.5 
•Hawaii  

Pan-STARRS (2014- ) 
•7 deg2 FoV 
•180cm telescope 
•~21 mag  
•Hawaii 

ASAS-SN (2013- ) 
•Set of small, wide-field commercial lenses 
•~17 mag

GOTO Phase II 
•40 deg2 FoV     
•8 x 40cm telescopes 
•19.5-20.5 mag 
•La Palma



Large Synoptic Survey Telescope
Opening a Window of Discovery on the Dynamic Universe

• 8.4 m primary mirror 
• 3.2 Gpixel camera (3.5 deg FOV) 
• 1000 images per night - 9600 deg2 (41 250 deg2 in the whole celestial sphere) 
• ~450 calibration exposures 
• ~20 TB of raw data per 24 hr 
• 107 “alerts” per night 
• Final data: 0.5 Exabytes 
• Final database: 15 PB 

Petabyte = 1000 TB 
Exabyte = 1000 PB
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Figure 1. Schematic of the ANTARES architecture. The processing pipeline is enclosed by the black dashed line. The core

machine learning stages described in this work and depicted in Fig. 10 are bracketed in yellow.
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DASH
Deep Automated Supernova and 

Host spectral classification
Daniel Muthukrishna

University of Cambridge

Daniel Muthukrishna, STScI Lunch, 16 May 2018 http://www.danielmuthukrishna.com

What do we observe?



DASH
Deep Automated Supernova and 

Host spectral classification
Daniel Muthukrishna

University of Cambridge

Daniel Muthukrishna, STScI Lunch, 16 May 2018 http://www.danielmuthukrishna.com

Previous classification methods

› Currently classification is slow, labour-intensive, and can take tens of 
minutes for a single supernova spectrum

› SNID – Stephane Blondin (Fortran)
- Uses a cross-correlation of input with templates

- Fast

- Inaccurate with signals that are intermixed with host galaxy light

› Superfit – Andy Howell (IDL)
- Uses a minimisation of chi-squared

- Very slow, labour-intensive

- Can deal with intermixed host galaxy light



DASH
Deep Automated Supernova and 

Host spectral classification
Daniel Muthukrishna

University of Cambridge

Daniel Muthukrishna, STScI Lunch, 16 May 2018 http://www.danielmuthukrishna.com

Problems with current methods

› All rely on iterative template matching processes

- Computation time increases linearly with the number of templates
- Can only compare to one template at a time (rather than the aggregate 

set of each SN type)

› Chi-squared minimisations are slow

› Not autonomous: requires a lot of human-input



DASH
Deep Automated Supernova and 

Host spectral classification
Daniel Muthukrishna

University of Cambridge

Daniel Muthukrishna, STScI Lunch, 16 May 2018 http://www.danielmuthukrishna.com

How DASH improves
› Speed

- Autonomously classify several spectra at once

- Significantly faster (example: 250 classified spectra in 18 seconds)

› Accuracy
- DASH classifies based on features instead of templates

• Uses aggregate set of templates rather than a single template

- Softmax regression probabilities

› Precision
- More specific classification including age and specific type

› Installation and ease of use
- Graphical interface and python library

- Very simple installation and use
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Deep Automated Supernova and 

Host spectral classification
Daniel Muthukrishna

University of Cambridge
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How DASH improves
› Speed

- Autonomously classify several spectra at once

- Significantly faster (example: 250 classified spectra in 18 seconds)

› Accuracy
- DASH classifies based on features instead of templates

• Uses aggregate set of templates rather than a single template

- Softmax regression probabilities

› Precision
- More specific classification including age and specific type

› Installation and ease of use
- Graphical interface and python library

- Very simple installation and use

What type of SN is this?
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Host spectral classification
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Why Deep Learning?
› Deep Learning has had success in a range of new Big Data problems:

- Image, speech, language recognition. 

› Accuracy improves with number of template (does not affect computation time)

› Training process is separate to testing

› Only need to train once. Then only need the trained model instead of the entire template set.

› Train based on the aggregate set of all templates in a particular SN bin

› Disadvantages

- Deep learning is often position invariant, which makes redshifting difficult. 

- Softmax probabilities are relative, not absolute measures
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Convolutional Neural Network

› Two convolutional layers with Tensorflow

- 2 layers was over 10-30% better than a single layer
- 3 layers provided no significant improvement

› 4831 spectra across 403 different supernovae
- Training set – 80%

- Validation set – 20%

› Need to oversample
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Deep Automated Supernova and 

Host spectral classification
Daniel Muthukrishna

University of Cambridge

Daniel Muthukrishna, STScI Lunch, 16 May 2018 http://www.danielmuthukrishna.com

Why Deep Learning?

Daniel Muthukrishna, ASA Meeting, 12 July 2017 http://www.danielmuthukrishna.com


