(Some) basics of astronomical observations and data processing

Seppo Mattila (sepmat@utu.fi) Department of Physics and Astronomy, University of Turku

Tove Janson, 1946

Astronomical observations

Telescopes

Nordic Optical Telescope, La Palma, Canary Islands

Telescopes

Nordic Optical Telescope, La Palma, Canary Islands

Astronomical instruments

The Nordic Transient Explorer (NTE) being built by the Niels Bohr Institute

Observing modes

- Visitor mode (researcher travels to the observatory for the observations)
- Service mode (observations carried out by the observatory staff)
- Target of Opportunity (interrupting the scheduled observations)
- Remote observations (for educational use)

Basic principles of a charge-coupled device (CCD)

- Photoelectric effect silicon exhibits an energy gap between the valence and conduction bands
- Incoming photons with a suitable energy interact with the Si atoms and excite valance electrons into the the conduction band
- An electric field applied for capturing the free electrons, this way a CCD detector can collect a large number of photons
- Typical arrays: 2048 x 2048, or 4096 x 4096

Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, S. Beckwith (STScl) and the HUDF Team

Imaging observations

• Determine the brightness (photometry), positions (astrometry) and structure of astronomical objects, detect new objects

• Use filters to select a certain wavelength range and repeat the imaging in multiple filters to determine the colours of the object

• Use CCD detector (or other semiconductors) to record the light

Spectroscopic observations

• Determine the flux density as a function of wavelength (spectral energy distribution, spectral lines, physical conditions, velocities etc.)

- Use a mask with a narrow aperture (slit) to cut the 2D image to 1D
- Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum
- Spectrographs use an imaging device (CCD) to record the dispersed light

5 OB stars with $T_{eff} \sim 20\ 000 - 30\ 0001$ $L \sim 50\ 000 - 150\ 000$

ionised gas

dust

Downloads — mattila@tuorla12-astro: ~ — more naco_img_jitter_0002.fits — 80×... T / file does conform to FITS standard -32 / number of bits per data pixel 2 / number of data axes NAXIS 1471 / length of data axis 1 NAXIS1 1473 / length of data axis 2 NAXIS2 EXTEND T / FITS dataset may contain extensions COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H DATE '2015-11-29T21:32:04' / file creation date (YYYY-MM-DDThh:mm:ss UT) EXPTIME 90. / Integration time AIRMASS / Averaged air mass (Recalculated) / Active alarm(s), if any. ALARM 'ESO-PARANAL / European Southern Observatory ORIGIN TELESCOP= 'ESO-VLT-U4' / ESO Telescope Name INSTRUME= 'NAOS+CONICA' / Instrument used OBJECT = 'SN1987A_Ks' / Target description 83. / 05:35:27.9 RA (J2000) pointing (deg) -69. / -69:16:11.1 DEC (J2000) pointing (deg) DEC EQUINOX = 2000. / Standard FK5 (years) RADECSYS= 'FK5 / Coordinate reference frame MJD-OBS = 55479. / Obs start 2010-10-10T08:12:44.708 DATE-OBS= '2010-10-10T08:12:44.7081' / Observing date UTC 29563. / 08:12:43.000 UTC at start (sec) 17185. / 04:46:25.545 LST at start (sec) LST / Name(s) of proposer(s) PI-COI = 'UNKNOWN OBSERVER= 'UNKNOWN / Name of observer ARCFILE = 'NAC0.2010-10-10T08:12:44.708.fits' / Archive File Name DATAMD5 = 'd4a2475e9288771a5e941cb4e84e2c58' / MD5 checksum PIPEFILE= 'naco img jitter.fits' / Filename of data product HIERARCH ESO OBS DID = 'ESO-VLT-DIC.OBS-1.11' / OBS Dictionary HIERARCH ESO OBS EXECTIME = 2937 / Expected execution time HIERARCH ESO OBS GRP = '0 ' / linked blocks HIERARCH ESO OBS ID = 495606 / Observation block ID HIERARCH ESO OBS NAME = 'SN1987A_NACO_Ks_2' / OB name HIERARCH ESO OBS OBSERVER = 'UNKNOWN ' / Observer Name HIERARCH ESO OBS PI-COI ID = 1158 / ESO internal PI-COI ID HIERARCH ESO OBS PI-COI NAME = 'UNKNOWN ' / PI-COI name HIERARCH ESO OBS PROG ID = '086.D-0713(D)' / ESO program identification HIERARCH ESO OBS START = '2010-10-10T08:08:56' / OB start time HIERARCH ESO OBS TARG NAME = 'SN1987A_Ks' / OB target name HIERARCH ESO OBS TPLNO = 2 / Template number within OB HIERARCH ESO TPL DID = 'ESO-VLT-DIC.TPL-1.9' / Data dictionary for TPL HIERARCH ESO TPL EXPNO = 1 / Exposure number within template HIERARCH ESO TPL ID = 'NACO_img_obs_AutoJitter' / Template signature ID HIERARCH ESO TPL NAME = 'Imaging with random offsets' / Template name HIERARCH ESO TPL NEXP = 18 / Number of exposures within templat HIERARCH ESO TPL PRESEQ = 'cnoseqImgObsAutoJitter' / Sequencer script HIERARCH ESO TPL START = '2010-10-10T08:12:19' / TPL start time HIERARCH ESO TPL VERSION = '@(#) \$Revision: 1.114 \$' / Version of the templa HIERARCH ESO TEL AIRM END = 1. / Airmass at end HIERARCH ESO TEL AIRM START = 1. / Airmass at start HIERARCH ESO TEL ALT = 44. / Alt angle at start (deg) HIERARCH ESO TEL AMBI FWHM END = 0. / Observatory Seeing gueried from AS HIERARCH ESO TEL AMBI FWHM START = 0. / Observatory Seeing queried from AS HIERARCH ESO TEL AMBI PRES END = 741. / Observatory ambient air pressure q HIERARCH ESO TEL AMBI PRES START = 741. / Observatory ambient air pressure q

Flexible Image Transport System (FITS)

- Standard format in astronomy > 30 yr
- ASCII header with keyword/value pairs
- Pixel data without any compression
- Multidimensional arrays for 3D+ cubes
- Not proprietary / open format, large number of viewers, editors, libraries
- Adopted by the Vatican Library for the long-term digital preservation of material

Point spread function (PSF)

$$I_{observed} = I_{real} \otimes PSF$$

- Determines the spatial resolution of an observation
- Can be measured and modelled using stars (point-sources) present in the astronomical images
- Knowing the PSF allows precise astrometric and photometric measurements by PSF fitting techniques and detection of variability by image subtraction

Ideal (diffraction limited) PSF if no atmosphere

 $\theta \sim ~1.22 ~x~\lambda \,/\,D$

(where λ is wavelength, D the diameter of the telescope and θ is in radians)

Atmospheric turbulence broadens the PSF resulting in a Gaussian PSF (seeing)

Signal-to-Noise Ratio

• Most important measure of the level of 'goodness' of your observation

$$\frac{S}{N} = \frac{signal}{\sqrt{noise_1^2 + noise_2^2 + \dots + noise_n^2}}$$

where *noise*₁, *noise*₂, ... are different sources of noise • Determines the integration time required for your observation

Signal-to-Noise vs. exp. time

Increasing exposure time by x2 only increases S/N by x sqrt(2)

Signal-to-Noise vs. exp. time

Increasing exposure time by x2 only increases S/N by x sqrt(2)

Astronomical observatories

ESO'S OBSERVATION FACILITIES IN CHILE

Very Large Telescope (VLT): 4 x 8.2 m telescopes for optical and infraredobservationsUT3 (Melipal)UT4 (Yepun)

Extremely Large Telescope (ELT): 39 m telescope for optical and infrared observations (first light 2024)

2.6m Nordic Optical Telescope (NOT) La Palma, Spain (2.4 km) Atacama Large Millimeter Array (ALMA): 66 x 12 meter antennas for interferometric radio observations (350µm - 10 mm) Global Very Long Baseline Interferometry (VLBI) Array: interferometric radio observations (cm wavelenghts)

Examples of astronomical imaging data

soft X-ray image (0.5 - 7 keV)

NASA Chandra X-ray observatory

optical image (435+814 nm)

Hubble Space Telescope (HST)

Hubble Space Telescope (HST) optical (435 + 814 nm) (PSF FWHM ~ 0.1 ")

NOT/NOTCam near-infrared (2.2 μ m) (PSF FWHM ~ 1")

2010P

Gemini-N/Altair near-infrared (1.1-2.2 μ m) (PSF FWHM ~ 0.1")

Very Large Array (VLA) radio image (8.46 GHz = 3.5 cm) (PSF FWHM ~ 0.5")

Supernova progenitor detections by relative astrometry

Mattila et al. (2008) Maund et al. (2014)

The motion of a star around the central black hole in the Milky Way

VLT NACO May 2002

S2 Orbit around SgrA*

Calibration of astronomical observations

Data reduction: removal of instrumental signatures

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Star #	<i>mU</i> (mag)	m _B (mag)	m_V (mag)	m_R (mag)
1	14.722(0.005)	14.852(0.011)	14.313(0.026)	13.958(0.025)
2	16.063(0.012)	16.213(0.014)	15.652(0.027)	15.186(0.026)
3	17.224(0.021)	17.198(0.016)	16.510(0.022)	16.015(0.024)
4	17.388(0.024)	17.196(0.015)	16.455(0.023)	15.899(0.026)
5	14.388(0.006)	14.225(0.007)	13.546(0.045)	13.318(0.058)
6	16.615(0.016)	16.655(0.012)	15.960(0.017)	15.492(0.026)
7	15.489(0.008)	15.525(0.006)	14.867(0.008)	14.544(0.012)
8	16.586(0.014)	16.168(0.008)	15.380(0.013)	14.947(0.008)
9	15.010(0.007)	14.876(0.011)	14.185(0.011)	13.742(0.036)
10	14.669(0.006)	14.762(0.008)	14.223(0.010)	13.888(0.023)
11	16.181(0.012)	16.136(0.007)	15.525(0.009)	15.204(0.007)
12	15.107(0.006)	15.046(0.005)	14.345(0.018)	13.970(0.013)
13	17.828(0.038)	17.981(0.020)	17.442(0.017)	17.110(0.012)
14	15.806(0.012)	15.959(0.015)	15.506(0.009)	15.188(0.035)
15	16.208(0.013)	16.237(0.011)	15.685(0.010)	15.385(0.025)
16	16.554(0.016)	16.522(0.008)	15.891(0.015)	15.533(0.009)
17	14.933(0.009)	14.866(0.012)	14.175(0.010)	13.832(0.052)
18	14.814(0.007)	14.683(0.006)	14.080(0.008)	13.701(0.029)
19	18.566(0.069)	18.046(0.021)	17.196(0.013)	16.756(0.018)
20	17.727(0.037)	17.625(0.015)	16.891(0.012)	16.539(0.014)
21	17.487(0.028)	17.463(0.015)	16.850(0.014)	16.534(0.020)
22	17.822(0.037)	17.628(0.016)	16.898(0.011)	16.584(0.017)
23	16.545(0.018)	15.644(0.010)	14.660(0.026)	14.070(0.056)
24	16.149(0.015)	15.747(0.006)	15.013(0.012)	14.593(0.030)
25	16.069(0.015)	15.739(0.007)	15.024(0.007)	14.702(0.023)

Table 1. Magnitudes of the SN 2009kn field stars (for the identifications, see Fig. 1). The 1σ statistical errors are given in brackets.

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Astrometric calibration of imaging observations

- *Absolute astrometry* in a real coordinate system
 - E.g., reporting the coordinates of a newly discovered supernova
- Relative (or differential) astrometry wrt other objects in the observed field
 - Object position in image coordinates (x,y)
- Alignment of images
- Can usually identify a number of point sources (stars) common in both images
- Apply geometric transformation for x and y shifts, pixel scale, rotation

Determining positions of objects in the images

- For absolute/relative astrometry need to measure accurate (x,y) coordinates for the objects in the images
- *Centroiding* most commonly used: calculate the intensity weighted mean in (x,y)
- Gaussian fitting with fixed FWHM separately in x and y
- *PSF fitting* (needed in crowded fields)

Geometric transformations: shift

Derive a geometric transformation to align image A (x_A, y_A) to image B (x_B, y_B)

 $x_B = a + x_A$ $y_B = b + y_A$

Number of free parameters: 2

Geometric transformations: rotation

Derive a geometric transformation to align image A (x_A, y_A) to image B (x_B, y_B)

 $x_{B} = x_{A}\cos(\Theta) - y_{A}\sin(\Theta)$ $y_{B} = x_{A}\sin(\Theta) + y_{A}\cos(\Theta)$

Number of free parameters: 1 (2 if different for x and y)

Geometric transformations: scale

Derive a geometric transformation to align image A (x_A, y_A) to image B (x_B, y_B)

 $x_{B} = S_{x} x_{A}$ $y_{B} = S_{y} y_{A}$

Number of free parameters: 1 (2 if different for x and y)

Geometric transformations: general

Derive a geometric transformation to align image A (x_A, y_A) to image B (x_B, y_B)

Number of free parameters: 4 (if rotation and scale the same for x and y) 6 (if different rotation and scale for x and y) ≥ 10 (if including also a distortion term)

Discovery of supernovae by precise alignment, PSF matching and subtraction of images

Advanced astronomical instrumentation

Figure 3-1: Principle of Adaptive Optics VLT/NACO User manual

FWHM = 0.1" (AO corrected)

Integral-field spectroscopy

MUSE on the VLT

Big data

Large Synoptic Survey Telescope Opening a Window of Discovery on the Dynamic Universe

- 8.4 m primary mirror
- 3.2 Gpixel camera (3.5 deg FOV)
- 1000 images per night 9600 deg² (41 250 deg² in the whole celestial sphere)
- ~450 calibration exposures
- ~20 TB of raw data per 24 hr
- 10⁷ "alerts" per night
- Final data: 0.5 Exabytes
- Final database: 15 PB Petabyte = 1000 TB

Exabyte = 1000 PB

1000 images (~20 terabytes of raw data) / night ~10⁷ alerts per night

 $\sim 10^6$ alerts per night

 $\sim 10^3$ alerts per night

 $\sim 10^2$ alerts per night

Already, the first phase of the SKA will produce ~260 TB of raw data per second (~1 Exabytes per hour) !!

