(Some) basics of astronomical observations and data processing

Seppo Mattila (sepmat@utu.fi)
Department of Physics and Astronomy, University of Turku

Astronomical observations

Telescopes

Telescopes

Astronomical instruments

The Nordic Transient Explorer (NTE) being built by the Niels Bohr Institute

Observing modes

- Visitor mode (researcher travels to the observatory for the observations)
- Service mode (observations carried out by the observatory staff)
- Target of Opportunity (interrupting the scheduled observations)
- Remote observations (for educational use)

Basic principles of a charge-coupled device (CCD)

- Photoelectric effect - silicon exhibits an energy gap between the valence and conduction bands
- Incoming photons with a suitable energy interact with the Si atoms and excite valance electrons into the the conduction band
- An electric field applied for capturing the free electrons, this way a CCD detector can collect a large number of photons
- Typical arrays: 2048×2048, or 4096×4096

Conduction

Band

Imaging observations

- Determine the brightness (photometry), positions (astrometry) and structure of astronomical objects, detect new objects
- Use filters to select a certain wavelength range and repeat the imaging in multiple filters to determine the colours of the object
- Use CCD detector (or other semiconductors) to record the light

The Cosmic Bird

Spectroscopic observations

- Determine the flux density as a function of wavelength (spectral energy distribution, spectral lines, physical conditions, velocities etc.)
- Use a mask with a narrow aperture (slit) to cut the 2D image to 1D
- Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum
- Spectrographs use an imaging device (CCD) to record the dispersed light

SIMPLE
BITPIX =
NAXIS
NAXIS
NAXIS2
EXTEND
COMMENT
COMMENT
DATE
EXPTIME
AIRMASS
ALARM
ORIGIN
TELESCOP
INSTRUME=
OBJECT
EQUINOX
RADECSYS=
MJD-0BS $=$
DATE-0BS $=$
UTC
LST
PI-COI
OBSERVER=
ARCFILE $=$ 'NAC0.2010-10-10T08:12:44.708.fits' / Archive File Name
DATAMD5 $=$ ' $\mathrm{d} 4 \mathrm{a} 2475 \mathrm{e} 9288771 a 5 \mathrm{e} 941 \mathrm{cb4e84e2c58'} /$ MD5 checksum
PIPEFILE= 'naco_ing_jitter.fits' / Filename of data product
HIERARCH ESO OBS DID = 'ESO-VLT-DIC.OBS-1.11' / OBS Dictionary
HIERARCH ESO OBS EXECTIME $=2937$ / Expected execution time
HIERARCH ESO OBS GRP $=$ ' 0 ' / linked blocks
HIERARCH ESO OBS ID $=495606 /$ Observation block ID
HIERARCH ESO OBS NAME $=$ 'SN1987A_NACO_Ks_2' / OB name
HIERARCH ESO OBS OBSERVER $=$ 'UNKNOWN " Observer Name
HIERARCH ESO OBS PI-COI ID $=1158 /$ ESO internal PI-COI II
HIERARCH ESO OBS PI-COI NAME = 'UNKNOWN ' / PI-COI name
HIERARCH ESO OBS PROG ID = '086.D-0713(D)' / ESO program identification
HIERARCH ESO OBS START $=$ ' $2010-10-10 T 08: 08: 56 ' /$ OB start time
HIERARCH ESO OBS TARG NAME $=$ 'SN1987A_Ks' $/$ OB target name
HIERARCH ESO OBS TPLNO $=2 /$ Template number within $0 B$
HIERARCH ESO TPL DID = 'ES0-VLT-DIC.TPL-1.9' / Data dictionary for TPL
HIERARCH ESO TPL EXPNO = $1 /$ Exposure number within template
HIERARCH ESO TPL ID $=$ 'NACO_img_obs_AutoJitter' / Template signature ID
HIERARCH ESO TPL NAME = 'Imaging with random offsets' / Template name
HIERARCH ESO TPL NEXP $=18 /$ Number of exposures within templat
HIERARCH ESO TPL PRESEO $=$ 'cnoseqImg0bsAutoJitter' / Sequencer script
HIERARCH ESO TPL START $=$ ' $2010-10-10$ T08:12:19' / TPL start time
HIERARCH ESO TPL VERSION $=$ ' $a\left({ }^{(\#)}\right.$ \$Revision: 1.114 s ' / Version of the templa
HIERARCH ESO TEL AIRM END $=1$. / Airmass at end
HIERARCH ESO TEL AIRM START $=1$. / Airnass at start
HIERARCH ESO TEL ALT $=44$. / Alt angle at start (deg)
HIERARCH ESO TEL AMBI FWHM END $=0$ 0. / Observatory Seeing queried from AS
HIERARCH ESO TEL AMBI FWHM START = 0. / Observatory Seeing queried from AS
HIERARCH ESO TEL AMBI PRES END $=741$. / Observatory ambient air pressure q
HIERARCH ESO TEL AMBI PRES START $=741$. / Observatory ambient air pressure q

T / file does conforn to FITS standard
-32/ number of bits per data pixel
2 / number of data axes
1471 / length of data axis 1
1473 / length of data axis 2
T / FITS dataset may contain extensions
FITS (Flexible Image Transport System) format is defined in 'Astronony and Astrophysics', volume 376, page 359; bibcode: 2001A\&A...376..359H '2015-11-29T21:32:04' / file creation date (YYYY-MM-DOThh:mn:ss UT) 90. / Integration time

1. / Averaged air mass (Recalculated)
/ Active alarm(s), if any.
'ESO-PARANAL.
/ European Southern Observatory
/ ESO Telescope Nane
/ Instrument used
/ Target description
2. / $05: 35: 27.9$ RA (J2000) pointing (deg)
-69 . / -69:16:11.1 DEC (J2000) pointing (deg)
3. / Standard FK5 (years)
/ Coordinate reference frame
4. / Obs start 2010-10-10Te8:12:44.7e8

5K5 5479. / Obs start 2010-10-10
2010-10-10Te8:12:44.7081' / Observing date
29563. / e8:12:43.000 UTC at start (sec)
17185. / e4:46:25.545 LST at start (sec) / Name(s) of proposer(s)
$\begin{array}{ll}\text { 'UNKNOWN ' } & \text { / Name (s) of propos } \\ \text { 'UNKNOWN , Name of observer }\end{array}$
'UNKNOWN
'NAOS+CONICA'
'SN1987A_Ks'

Flexible Image Transport System (FITS)

- Standard format in astronomy > 30 yr
- ASCII header with keyword/value pairs
- Pixel data without any compression
- Multidimensional arrays for 3D+ cubes
- Not proprietary / open format, large number of viewers, editors, libraries
- Adopted by the Vatican Library for the long-term digital preservation of material

Point spread function (PSF)

$$
I_{\text {observed }}=I_{\text {real }} \otimes P S F
$$

- Determines the spatial resolution of an observation
- Can be measured and modelled using stars (point-sources) present in the astronomical images
- Knowing the PSF allows precise astrometric and photometric measurements by PSF fitting techniques and detection of variability by image subtraction

Ideal (diffraction limited) PSF if no atmosphere
$\theta \sim 1.22 \times \lambda / D$
(where λ is wavelength, D the diameter of the telescope and θ is in radians)

Atmospheric turbulence broadens the PSF resulting in a Gaussian PSF (seeing)

Signal-to-Noise Ratio

- Most important measure of the level of 'goodness' of your observation

$$
\frac{S}{N}=\frac{\text { signal }}{\sqrt{\text { noise }_{1}^{2}+\text { noise }_{2}^{2}+\ldots+\text { noise }_{n}^{2}}}
$$

where noise $_{1}$, noise $_{2}, \ldots$ are different sources of noise

- Determines the integration time required for your observation

Signal-to-Noise vs. exp. time

Increasing exposure time by $x 2$ only increases S / N by x sqrt(2)

Signal-to-Noise vs. exp. time

Increasing exposure time by $x 2$ only increases S / N by x sqrt(2)

Astronomical observatories

ESO'S OBSERVATION FACILITIES IN CHILE

ANTOFAGASTA CHAJNANTOR
PARANAL
 HUNTER
LA SERENA

SANTIAGO

Very Large Telescope (VLT): $4 \times 8.2 \mathrm{~m}$ telescopes for optical and infrared observations

UT3 (Melipal)
SPHERE VISIR
VIMOS
CRIRES $+(2018)$

UT4 (Yepun) AOF (2017) HAWK-I SINFONI MUSE

LGSF
ALGSF (2017)

VISTA
VIRCAM
OmegaCAM

Extremely Large Telescope (ELT): 39 m telescope for optical and infrared observations (first light 2024)

CANARY ISLANDS

Hierro

Atacama Large Millimeter Array (ALMA):
66×12 meter antennas for interferometric radio observations
($350 \mu \mathrm{~m}-10 \mathrm{~mm}$)

Global Very Long Baseline Interferometry (VLBI) Array: interferometric radio observations (cm wavelenghts)

The Global VLBI - Array

Examples of astronomical imaging data

optical image (435+814 nm)
Hubble Space Telescope (HST)

NASA Chandra X-ray observatory

Hubble Space Telescope (HST) optical ($435+814 \mathrm{~nm}$) (PSF FWHM $\left.{ }^{*} \sim 0.1 "\right)$

Gemini-N/Altair near-infrared (1.1-2.2 $\mu \mathrm{m}$) (PSF FWHM ~ 0.1")

Very Large Array (VLA) radio image $(8.46 \mathrm{GHz}=3.5 \mathrm{~cm})($ PSF FWHM $\sim 0.5 ")$

Very Long Baseline Array (VLBA) radio image

Supernova progenitor detections by relative astrometry

Mattila et al. (2008) Maund et al. (2014)

The motion of a star around the central black hole in the Milky Way

VLT NACO May 2002
S2 Orbit around SgrA*

ESO Science Release 226

Calibration of astronomical observations

Data reduction: removal of instrumental signatures

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Table 1. Magnitudes of the SN 2009kn field stars (for the identifications, see Fig. 1). The 1σ statistical errors are given in brackets.

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Astrometric calibration of imaging observations

- Absolute astrometry in a real coordinate system
- E.g., reporting the coordinates of a newly discovered supernova
- Relative (or differential) astrometry wrt other objects in the observed field
- Object position in image coordinates (x,y)
- Alignment of images
- Can usually identify a number of point sources (stars) common in both images
- Apply geometric transformation for x and y shifts, pixel scale, rotation

Determining positions of objects in the images

- For absolute/relative astrometry need to measure accurate (x, y) coordinates for the objects in the images
- Centroiding most commonly used: calculate the intensity weighted mean in (x,y)
- Gaussian fitting with fixed FWHM separately in x and y
- PSF fitting (needed in crowded fields)

Geometric transformations: shift

Derive a geometric transformation to align image $\mathrm{A}\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}\right)$ to image $\mathrm{B}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}\right)$

$$
\begin{aligned}
& x_{B}=a+x_{A} \\
& y_{B}=b+y_{A}
\end{aligned}
$$

Number of free parameters: 2

Geometric transformations: rotation

Derive a geometric transformation to align image $A\left(x_{A}, y_{A}\right)$ to image $B\left(x_{B}, y_{B}\right)$

$$
\begin{aligned}
& x_{B}=x_{A} \cos (\Theta)-y_{A} \sin (\Theta) \\
& y_{B}=x_{A} \sin (\Theta)+y_{A} \cos (\Theta)
\end{aligned}
$$

Number of free parameters: 1 (2 if different for x and y)

Geometric transformations: scale

Derive a geometric transformation to align image $\mathrm{A}\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}\right)$ to image $\mathrm{B}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}\right)$

$$
\begin{aligned}
& x_{B}=S_{x} x_{A} \\
& y_{B}=S_{y} y_{A}
\end{aligned}
$$

Number of free parameters: 1 (2 if different for x and y)

Geometric transformations: general

Derive a geometric transformation to align image $\mathrm{A}\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}\right)$ to image $\mathrm{B}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}\right)$
Number of free parameters: 4 (if rotation and scale the same for x and y)
6 (if different rotation and scale for x and y)
≥ 10 (if including also a distortion term)

Discovery of supernovae by precise alignment, PSF matching and subtraction of images

Advanced astronomical instrumentation

Adaptive Optics imaging

Figure 3-1: Principle of Adaptive Optics

Integral-field spectroscopy

Two dimensional original on-sky image

MUSE on the VLT

$$
0, \hat{0}
$$

Big data

Large Synoptic Survey Telescope

Opening a Window of Discovery on the Dynamic Universe

- 8.4 m primary mirror
- 3.2 Gpixel camera (3.5 deg FOV)
- 1000 images per night - $9600 \mathrm{deg}^{2}$ ($41250 \mathrm{deg}^{2}$ in the whole celestial sphere)
- ~450 calibration exposures
- ~20 TB of raw data per 24 hr
- $10{ }^{7}$ "alerts" per night
- Final data: 0.5 Exabytes
- Final database: 15 PB Petabyte $=1000 \mathrm{~TB}$ Exabyte $=\mathbf{1 0 0 0}$ PB

Already, the first phase of the SKA will produce $\sim 260 \mathrm{~TB}$ of raw data per second (~ 1 Exabytes per hour) !!

