(Some) basics of astronomical observations and data processing

Seppo Mattila (sepmat@utu.fi) Department of Physics and Astronomy, University of Turku

Tove Janson, 1946

Astronomical observations

Wavelength

Telescopes and astronomical instrumentation

Nordic Optical Telescope, La Palma, Canary Islands

Telescopes and astronomical instrumentation

Nordic Optical Telescope, La Palma, Canary Islands

Telescopes and astronomical instrumentation

The Nordic Transient Explorer (NTE) being built by the Niels Bohr Institute

Astronomical instrumentation

- Astronomical instruments purpose-built by large international consortia
- Instrumentation projects typically require several years for the design and construction as a part of a large group of researchers and engineers
- Cost typically several MEur can be compensated by the observatories by guaranteed time observations (GTO) time available for the consortium

Basic principles of a charge-coupled device (CCD)

- Photoelectric effect silicon exhibits an energy gap between the valence and conduction bands
- Incoming photons with a suitable energy interact with the Si atoms and excite valance electrons into the the conduction band
- An electric field applied for capturing the free electrons, this way a CCD detector can collect a large number of photons
- Typical arrays: 2048 x 2048, or 4096 x 4096

Hubble Space Telescope • Advanced Camera for Surveys

Astronomical imaging observations

- Determine the brightness (photometry), positions (astrometry) and structure of astronomical objects, detect new objects
- Use filters to select a certain wavelength range and repeat the imaging in multiple filters to determine the colours of the object
- Use CCD detector (or other semiconductors) to record the light

Astronomical spectroscopic observations

• Determine the flux density as a function of wavelength (spectral energy distribution, spectral lines, physical conditions, velocities etc.)

- Use a mask with a narrow aperture (slit) to cut the 2D image to 1D
- Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum
- Spectrographs use an imaging device (CCD) to record the dispersed light

Astronomical data format

Flexible Image Transport System (FITS)

- Standard format in astronomy > 30 yr
- ASCII header with keyword/value pairs
- Pixel data without any compression
- Multidimensional arrays for 3D+ cubes
- Not proprietary / open format, large number of viewers, editors, libraries
- Adopted by the Vatican Library for the long-term digital preservation of material

SIMPLE = T / file does conform to FITS standard
BITPIX = -32 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 1471 / length of data axis 1
NAXIS2 = 1473 / length of data axis 2
EXTEND = T / FITS dataset may contain extensions
COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy
COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A376359H
DATE = '2015-11-29T21:32:04' / file creation date (YYYY-MM-DDThh:mm:ss UT)
EXPTIME = 90. / Integration time
AIRMASS = 1. / Averaged air mass (Recalculated)
ALARM = ' / Active alarm(s), if any.
<pre>DRIGIN = 'ESO-PARANAL' / European Southern Observatory</pre>
<pre>FELESCOP= 'ESO-VLT-U4' / ESO Telescope Name</pre>
INSTRUME= 'NAOS+CONICA' / Instrument used
DBJECT = 'SN1987A_Ks' / Target description
RA = 83. / 05:35:27.9 RA (J2000) pointing (deg)
DEC = -69. / -69:16:11.1 DEC (J2000) pointing (deg)
EQUINOX = 2000. / Standard FK5 (years)
ADECSYS= 'FK5 ' / Coordinate reference frame
MJD-OBS = 55479. / Obs start 2010-10-10T08:12:44.708
DATE-0BS= '2010-10-10T08:12:44.7081' / Observing date
UTC = 29563. / 08:12:43.000 UTC at start (sec)
LST = 17185. / 04:46:25.545 LST at start (sec)
PI-COI = 'UNKNOWN ' / Name(s) of proposer(s)
OBSERVER= 'UNKNOWN ' / Name of observer
ARCFILE = 'NAC0.2010-10-10T08:12:44.708.fits' / Archive File Name
DATAMD5 = 'd4a2475e9288771a5e941cb4e84e2c58' / MD5 checksum
PIPEFILE= 'naco img jitter fits' / Filename of data product
HIERARCH ESO OBS DID = 'ESO-VLT-DIC.OBS-1.11' / OBS Dictionary
HIERARCH ESO OBS EXECTIME = 2937 / Expected execution time
HIERARCH ESO OBS GRP = '0 ' / linked blocks
HIERARCH ESO OBS ID = $495606 / Observation block ID$
HIERARCH ESO OBS NAME = 'SN1987A_NACO_Ks_2' / OB name
HIERARCH ESO OBS OBSERVER = 'UNKNOWN / / Observer Name
HIERARCH ESO OBS PI-COI ID = 1158 / ESO internal PI-COI ID
HIERARCH ESO OBS PI-COI NAME = 'UNKNOWN ' / PI-COI name
HIERARCH ESO OBS PROG ID = '086.D-0713(D)' / ESO program identification
HIERARCH ESO OBS START = '2010-10-10T08:08:56' / OB start time
HIERARCH ESO OBS TARG NAME = 'SN1987A Ks' / OB target name
HIERARCH ESO OBS TPLNO = 2 / Template number within OB
HIERARCH ESO TPL DID = 'ESO-VLT-DIC.TPL-1.9' / Data dictionary for TPL
HIERARCH ESO TPL EXPNO = 1 / Exposure number within template
HIERARCH ESO TPL ID = 'NACO img obs Autolitter' / Template signature ID
HIERARCH ESO TPL NAME = 'Imaging with random offsets' / Template name
HIERARCH ESO TPL NEXP = 18 / Number of exposures within templat
HIERARCH ESO TPL PRESED = 'cnoseqImq0bsAutolitter' / Sequencer script
HIERARCH ESO TPL START = $2010-10-10708:12:19'$ / TPL start time
HIERARCH ESO TEL VERSION = ' $a(t)$ \$Revision: 1.114 \$' / Version of the templa
HIERARCH ESO TEL AIRM END = 1. / Airmass at end
HIERARCH ESO TEL AIRM START = 1. / Airmass at start
HIFRARCH FSO TEL ALT = 44 . (Alt angle at start (deg)
HIFRARCH FSO TEL AMBT FWHM END = 0. / Observatory Seeing queried from AS
HIERARCH ESO TEL AMBI FWHM START = 0. / Observatory Seeing queried from AS
HIERARCH ESO TEL AMBI PRES END = 741. / Observatory ambient air pressure o
HIERARCH ESO TEL AMBI PRES START = 741. / Observatory ambient air pressure o

The quality and calibration of astronomical observations

THE HAZARDS OF A PHOTON'S LIFE

well resolved

$$F(u,v) = \operatorname{FT}\{f(x,y)\}$$

i.e.,
$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp[2\pi i(ux + vy)] \, dx \, dy$$

Linearity
$$\operatorname{FT}\{f(x,y) + g(x,y)\} = F(u,v) + G(u,v)$$

Convolution
$$\operatorname{FT}\{f(x,y) \star g(x,y)\} = F(u,v) \cdot G(u,v)$$

Shift
$$\operatorname{FT}\{f(x - x_i, y - y_i)\} = F(u,v) \exp[2\pi i(ux_i + vy_i)]$$

Similarity
$$\operatorname{FT}\{f(ax, by)\} = \frac{1}{|ab|} F\left(\frac{u}{a}, \frac{v}{b}\right)$$

For a telescope aperture the diffraction pattern can be obtained from a 2dimensional **Fourier transform** of the **pupil function** that describes the aperture shape and wave-front aberrations. Can show for the angular size θ of the first minimum of the **diffraction pattern**

$$\sin \theta \sim \theta = 1.22 \lambda / D$$
 [rad]

where λ is the wavelength of the observation and D the telescope's diameter

For a telescope aperture the diffraction pattern can be obtained from a 2dimensional **Fourier transform** of the **pupil function** that describes the aperture shape and wave-front aberrations. Can show for the angular size θ of the first minimum of the **diffraction pattern**

$$\sin \theta \sim \theta = 1.22 \lambda / D$$
 [rad]

where λ is the wavelength of the observation and D the telescope's diameter

Point spread function (PSF)

$$I_{observed} = I_{real} \otimes PSF$$

- Determines the spatial resolution of an observation
- Can be measured and modelled using stars (point-sources) present in the astronomical images
- Knowing the PSF allows precise astrometric and photometric measurements by PSF fitting techniques and detection of variability by image subtraction

Atmospheric turbulence broadens the PSF resulting in a Gaussian PSF

$$I(r) = I(0) \exp(-r^2/2\sigma^2)$$

Point spread function (PSF)

Signal-to-Noise Ratio

• Most important measure of the level of 'goodness' of your observation

$$\frac{S}{N} = \frac{signal}{\sqrt{noise_1^2 + noise_2^2 + \dots + noise_n^2}}$$

where *noise*₁, *noise*₂, ... are different sources of noise

$$\frac{S}{N} = \frac{N_s}{\sqrt{N_s + n_{pix}(N_{bg} + N_D + N_R^2)}}$$

Signal-to-Noise Ratio

• Most important measure of the level of 'goodness' of your observation

$$\frac{S}{N} = \frac{N^*}{\sqrt{N^* + n_{\text{pix}}(N_{\text{sky}} + N_D + N_R^2)}}$$

where N^* is the number of photons N_{sky} , N_D , N_R different sources of noise • Determines the minimum $\frac{S}{\sqrt{N_s}} = \frac{N_s}{\sqrt{N_s}}$ for your observation

Signal-to-Noise Ratio

• Most important measure of the level of 'goodness' of your observation

$$\frac{S}{N} = \frac{N^*}{\sqrt{N^* + n_{\text{pix}}(N_{\text{sky}} + N_D + N_R^2)}}$$

where N^* is the number of photons N_{skv} N_D N_R different sources of noise

Data reduction: removal of instrumental signatures

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Star #	<i>mU</i> (mag)	m_B (mag)	m_V (mag)	m_R (mag)
1	14.722(0.005)	14.852(0.011)	14.313(0.026)	13.958(0.025)
2	16.063(0.012)	16.213(0.014)	15.652(0.027)	15.186(0.026)
3	17.224(0.021)	17.198(0.016)	16.510(0.022)	16.015(0.024)
4	17.388(0.024)	17.196(0.015)	16.455(0.023)	15.899(0.026)
5	14.388(0.006)	14.225(0.007)	13.546(0.045)	13.318(0.058)
6	16.615(0.016)	16.655(0.012)	15.960(0.017)	15.492(0.026)
7	15.489(0.008)	15.525(0.006)	14.867(0.008)	14.544(0.012)
8	16.586(0.014)	16.168(0.008)	15.380(0.013)	14.947(0.008)
9	15.010(0.007)	14.876(0.011)	14.185(0.011)	13.742(0.036)
10	14.669(0.006)	14.762(0.008)	14.223(0.010)	13.888(0.023)
11	16.181(0.012)	16.136(0.007)	15.525(0.009)	15.204(0.007)
12	15.107(0.006)	15.046(0.005)	14.345(0.018)	13.970(0.013)
13	17.828(0.038)	17.981(0.020)	17.442(0.017)	17.110(0.012)
14	15.806(0.012)	15.959(0.015)	15.506(0.009)	15.188(0.035)
15	16.208(0.013)	16.237(0.011)	15.685(0.010)	15.385(0.025)
16	16.554(0.016)	16.522(0.008)	15.891(0.015)	15.533(0.009)
17	14.933(0.009)	14.866(0.012)	14.175(0.010)	13.832(0.052)
18	14.814(0.007)	14.683(0.006)	14.080(0.008)	13.701(0.029)
19	18.566(0.069)	18.046(0.021)	17.196(0.013)	16.756(0.018)
20	17.727(0.037)	17.625(0.015)	16.891(0.012)	16.539(0.014)
21	17.487(0.028)	17.463(0.015)	16.850(0.014)	16.534(0.020)
22	17.822(0.037)	17.628(0.016)	16.898(0.011)	16.584(0.017)
23	16.545(0.018)	15.644(0.010)	14.660(0.026)	14.070(0.056)
24	16.149(0.015)	15.747(0.006)	15.013(0.012)	14.593(0.030)
25	16.069(0.015)	15.739(0.007)	15.024(0.007)	14.702(0.023)

Table 1. Magnitudes of the SN 2009kn field stars (for the identifications, see Fig. 1). The 1σ statistical errors are given in brackets.

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Astrometric calibration of imaging observations

- *Absolute astrometry* in a real coordinate system
 - E.g., reporting the coordinates of a newly discovered supernova
- Relative (or differential) astrometry wrt other objects in the observed field
 - Object position in image coordinates (x,y)
- Alignment of images
- Can usually identify a number of point sources (stars) common in both images
- Apply geometric transformation for x and y shifts, pixel scale, rotation

Determining positions of objects in the images

- For absolute/relative astrometry need to measure accurate (x,y) coordinates for the objects in the images
- *Centroiding* most commonly used: calculate the intensity weighted mean in (x,y)
- *Gaussian fitting* with fixed FWHM separately in x and y
- PSF fitting (needed in crowded fields)

Geometric transformations: general

Derive a geometric transformation to align image A (x_A, y_A) to image B (x_B, y_B)

Number of free parameters: 4 (if rotation and scale the same for x and y) 6 (if different rotation and scale for x and y) ≥ 10 (if including also a distortion term)

Astronomical observatories and future facilities

Roque de los Muchachos Observatory on La Palma, Canary Islands 17.88°W, 28.76°N, 2382m above sea level

Observatorio del Roque de los Muchachos, La Palma 17.88ºW, 28.76ºN, 2382m

Nordic Optical Telescope (NOT)

- Nordic Optical Telescope (NOT) operational since 1990, optics manufactured at Tuorla Observatory (nowadays Opteon Oy)
- The ownership transferred to Univ. of Turku and Aarhus University in 2020
- Operations based on long-term collaboration between Finland, Denmark, Norway, Iceland and Stockholm University

European Southern Observatory (ESO)

- European intergovernmental research organisation, establ. in 1962
- 16 member countries incl. Finland + Chile as the host country
- Headquarters in Germany, world-class observatories in Chile
- Over 750 staff from over 30 countries, more than 22 000 users
- Science data archive, data reduction pipelines, technology and instrumentation development, top level research

+ES+

European Southern Observatory (ESO) Very Large Telescope (VLT)

The 39-m Extremely Large Telescope (ELT) will have its first light in \sim 2027. Adaptive Optics correction will allow diffraction limited near-IR imaging with FWHM = 12 mas !

120 m

100 m

James Webb Space Telescope

- The primary mirror will be 6.5 metres in diameter and is made of 18 mirror segments of gold-coated beryllium
- JWST's wavelength range covered by the scientific instruments will be from about 0.6 μ m to 28 μ m, compared to Hubble's 0.1 μ m 2.5 μ m

NA SA

Capabilities of the JWST (in a nutshell)

- 6.5m primary mirror vs. 2.4m for HST collecting area of 25m² vs. 4.5m²
- Diffraction limited spatial resolution at $2\mu m$ similar to HST's at ~700nm
- Imaging and spectroscopy covering 600nm 28 μ m (HST: ~100 nm 2 μ m)
- NIRCam/JWST: 8x2048² pix (0.6-2.3μm) + 2x2048² pix (2.4-5μm) (WFC3/HST: 1024² pix)
- JWST operates at L2, uses solar shield to block the light from the Sun, Earth and Moon

Capabilities of the JWST (in a nutshell)

- 6.5m primary mirror vs. 2.4m for HST collecting area of 25m² vs. 4.5m²
- Diffraction limited spatial resolution at $2\mu m$ similar to HST's at ~700nm
- Imaging and spectroscopy covering 600nm 28 μ m (HST: ~100 nm 2 μ m)
- NIRCam/JWST: 8x2048² pix (0.6-2.3μm) + 2x2048² pix (2.4-5μm) (WFC3/HST: 1024² pix)
- JWST operates at L2, uses solar shield to block the light from the Sun, Earth and Moon

The Nobel prize in Physics 2017 was awarded "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Rainer Weiss (MIT)

Barry Barish (Caltech)

Kip Thorne (Caltech)

LIGO - A GIGANTIC INTERFEROMETER

splitter and hits the detector.

BEAM SPLITTER LIGHT DETECTOR

LIGO - A GIGANTIC INTERFEROMETER

Systematic search for electromagnetic counterparts

- Large and complex sky localisation areas need to be searched over quickly for rapidly evolving transients for the identification of viable candidates for spectroscopic observations
- Gravitational-wave Optical Transient Observer (GOTO) being built on La Palma and Siding Springs Observatory in Australia: robotic, rapid-response system with ~80 deg² field of view

WAVE OPTICAL TRANSIEN

GOTO is led by University of Warwick and Monash University with Univ. of Turku a member of the consortium

Systematic search for electromagnetic counterparts

- Large and complex sky localisation areas need to be searched over quickly for rapidly evolving transients for the identification of viable candidates for spectroscopic observations
- Gravitational-wave Optical Transient Observer (GOTO) being built on La Palma and Siding Springs Observatory in Australia: robotic, rapid-response system with ~80 deg² field of view

IONAL-WAVE OPTICAL TRANSIENT OBSERVER

Photometric and spectroscopic follow-up of the kilonova counterpart of GW170817

Time: -1225 days

Abbott+2017; Andreoni+2017; Arcavi+2017; Chornock+2017; Coulter+2017; Cowperhwaite+2017; Drout+2017; Evans+2017; Kasliwal+2017; Lipunv+2017; Nichol+2017; Pian+2017; Smartt+2017; Tanvir+2017; Troja+2017; Utsumi+2017; Valenti+2018

Advanced astronomical instrumentation

Integral-field spectroscopy

MUSE on the VLT

Big data !

Legacy Survey of Space and Time

- Vera C. Rubin Observatory with 8.4 m primary mirror
- 3.2 Gpixel camera (3.5 deg FOV; full moon ~0.5 deg)
- 1000 images per night 9600 deg² (41 250 deg² in the whole celestial sphere)
- ~450 calibration exposures
- ~20 TB of raw data per 24 hr
- 107 "alerts" per night
- Final data: 0.5 Exabytes
- Final database: 15 PB Petabyte = 1000 TB Exabyte = 1000 PB
 - operational in end of 2023 !

1000 images (~20 terabytes of raw data) / night ~107 alerts per night

~10⁶ alerts per night

 $\sim 10^3$ alerts per night

 $\sim 10^2$ alerts per night

Already, the first phase of the SKA will produce ~260 TB of raw data per second (~1 Exabytes per hour) !!

