(Some) basics of astronomical observations and data processing

Seppo Mattila (sepmat@utu.fi)
Department of Physics and Astronomy, University of Turku

Astronomical observations

Telescopes and astronomical instrumentation

Telescopes and astronomical instrumentation

Telescopes and astronomical instrumentation

The Nordic Transient Explorer (NTE) being built by the Niels Bohr Institute

Astronomical instrumentation

- Astronomical instruments purpose-built by large international consortia
- Instrumentation projects typically require several years for the design and construction as a part of a large group of researchers and engineers
- Cost typically several MEur - can be compensated by the observatories by guaranteed time observations (GTO) time available for the consortium

Basic principles of a charge-coupled device (CCD)

- Photoelectric effect - silicon exhibits an energy gap between the valence and conduction bands
- Incoming photons with a suitable energy interact with the Si atoms and excite valance electrons into the the conduction band
- An electric field applied for capturing the free electrons, this way a CCD detector can collect a large number of photons
- Typical arrays: 2048 x 2048, or 4096×4096

Band

Astronomical imaging observations

- Determine the brightness (photometry), positions (astrometry) and structure of astronomical objects, detect new objects
- Use filters to select a certain wavelength range and repeat the imaging in multiple filters to determine the colours of the object
- Use CCD detector (or other semiconductors) to record the light

The Cosmic Bird

Astronomical spectroscopic observations

- Determine the flux density as a function of wavelength (spectral energy distribution, spectral lines, physical conditions, velocities etc.)
- Use a mask with a narrow aperture (slit) to cut the 2D image to 1D
- Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum
- Spectrographs use an imaging device (CCD) to record the dispersed light

Astronomical data format

Flexible Image Transport System (FITS)

- Standard format in astronomy $>30 \mathrm{yr}$
- ASCII header with keyword/value pairs
- Pixel data without any compression
- Multidimensional arrays for 3D+ cubes
- Not proprietary / open format, large number of viewers, editors, libraries
- Adopted by the Vatican Library for the long-term digital preservation of material

The quality and calibration of astronomical observations

THE HAZARDS OF A PHOTON'S LIFE

$F(u, v)=\operatorname{FT}\{f(x, y)\}$
i.e., $\quad F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp [2 \pi i(u x+v y)] d x d y$
Linearity

$$
\operatorname{FT}\{f(x, y)+g(x, y)\}=F(u, v)+G(u, v)
$$

Convolution

$$
\mathrm{FT}\{f(x, y) \star g(x, y)\}=F(u, v) \cdot G(u, v)
$$

Shift

$$
\operatorname{FT}\left\{f\left(x-x_{i}, y-y_{i}\right)\right\}=F(u, v) \exp \left[2 \pi i\left(u x_{i}+v y_{i}\right)\right]
$$

Similarity

$$
\operatorname{FT}\{f(a x, b y)\}=\frac{1}{|a b|} F\left(\frac{u}{a}, \frac{v}{b}\right)
$$

For a telescope aperture the diffraction pattern can be obtained from a 2dimensional Fourier transform of the pupil function that describes the aperture shape and wave-front aberrations. Can show for the angular size θ of the first minimum of the diffraction pattern

$$
\sin \theta \sim \theta=1.22 \lambda / D[\mathrm{rad}]
$$

where λ is the wavelength of the observation and D the telescope's diameter

For a telescope aperture the diffraction pattern can be obtained from a 2dimensional Fourier transform of the pupil function that describes the aperture shape and wave-front aberrations. Can show for the angular size θ of the first minimum of the diffraction pattern

$$
\sin \theta \sim \theta=1.22 \lambda / D[\mathrm{rad}]
$$

where λ is the wavelength of the observation and D the telescope's diameter

Point spread function (PSF)

$$
I_{\text {observed }}=I_{\text {real }} \otimes P S F
$$

- Determines the spatial resolution of an observation
- Can be measured and modelled using stars (point-sources) present in the astronomical images
- Knowing the PSF allows precise astrometric and photometric measurements by PSF fitting techniques and detection of variability by image subtraction

Atmospheric turbulence broadens the PSF resulting in a Gaussian PSF

$$
I(r)=I(0) \exp \left(-r^{2} / 2 \sigma^{2}\right)
$$

Point spread function (PSF)

Signal-to-Noise Ratio

- Most important measure of the level of 'goodness' of your observation

$$
\frac{S}{N}=\frac{\text { signal }}{\sqrt{\text { noise }_{1}^{2}+\text { noise }_{2}^{2}+\ldots+\text { noise }_{n}^{2}}}
$$

where noise $_{1}$, noise $_{2}, \ldots$ are different sources of noise

Signal-to-Noise Ratio

- Most important measure of the level of 'goodness' of your observation

$$
\frac{S}{N}=\frac{N^{*}}{\sqrt{N^{*}+n_{\mathrm{pix}}\left(N_{\text {sky }}+N_{D}+N_{R}^{2}\right)}}
$$

where $N *$ is the number of photons $N_{s k y} N_{D} N_{R}$ different sources of noise

- Determines the minimum integration time required for your observation

Signal-to-Noise Ratio

- Most important measure of the level of 'goodness' of your observation

$$
\frac{S}{N}=\frac{N^{*}}{\sqrt{N^{*}+n_{\mathrm{pix}}\left(N_{\text {sky }}+N_{D}+N_{R}^{2}\right)}}
$$

where $N *$ is the number of photons $N_{s k y} N_{D} N_{R}$ different sources of noise

$\boldsymbol{x} \oplus \oplus$	X Spectool			
File	Vieu	Edit	Analyze	?

$S / N=50$

Data reduction: removal of instrumental signatures

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Table 1. Magnitudes of the SN 2009kn field stars (for the identifications, see Fig. 1). The 1σ statistical errors are given in brackets.

Photometric calibration of imaging observations

- Need to calibrate observations from each night (different atmospheric conditions)
- Can use field stars for precise relative calibration between different nights

Astrometric calibration of imaging observations

- Absolute astrometry in a real coordinate system
- E.g., reporting the coordinates of a newly discovered supernova
- Relative (or differential) astrometry wrt other objects in the observed field
- Object position in image coordinates (x, y)
- Alignment of images
- Can usually identify a number of point sources (stars) common in both images
- Apply geometric transformation for x and y shifts, pixel scale, rotation

Determining positions of objects in the images

- For absolute/relative astrometry need to measure accurate (x, y) coordinates for the objects in the images
- Centroiding most commonly used: calculate the intensity weighted mean in (x,y)
- Gaussian fitting with fixed FWHM separately in x and y
- PSF fitting (needed in crowded fields)

Geometric transformations: general

Derive a geometric transformation to align image $\mathrm{A}\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}\right)$ to image $\mathrm{B}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}\right)$
Number of free parameters: 4 (if rotation and scale the same for x and y)
6 (if different rotation and scale for x and y)
≥ 10 (if including also a distortion term)

Astronomical observatories and future facilities

Roque de los Muchachos Observatory on La Palma, Canary Islands

 $17.88^{\circ} \mathrm{W}, 28.76^{\circ} \mathrm{N}, 2382 \mathrm{~m}$ above sea level

Nordic Optical Telescope (NOT)

- Nordic Optical Telescope (NOT) operational since 1990, optics manufactured at Tuorla Observatory (nowadays Opteon Oy)
- The ownership transferred to Univ. of Turku and Aarhus University in 2020
- Operations based on long-term collaboration between Finland, Denmark, Norway, Iceland and Stockholm University

European Southern Observatory (ESO)

- European intergovernmental research organisation, establ. in 1962
- 16 member countries incl. Finland + Chile as the host country
- Headquarters in Germany, world-class observatories in Chile
- Over 750 staff from over 30 countries, more than 22000 users
- Science data archive, data reduction pipelines, technology and instrumentation development, top level research

Paranal Observatory located on Cerro Paraxial at 2635m

European Southern Observatory (ESO) Very Large Telescope (VLT)

The 39-m Extremely Large Telescope (ELT) will have its first light in ~2027. Adaptive Optics correction will allow diffraction limited near-IR imaging with FWHM = 12 mas!

James Webb Space Telescope

Integrated Science Instrument Module (ISIM)

- The primary mirror will be 6.5 metres in diameter and is made of 18 mirror segments of gold-coated beryllium
- JWST's wavelength range covered by the scientific instruments will be from about $0.6 \mu \mathrm{~m}$ to $28 \mu \mathrm{~m}$, compared to Hubble's $0.1 \mu \mathrm{~m}-2.5 \mu \mathrm{~m}$

Capabilities of the JWST (in a nutshell)

- 6.5 m primary mirror vs. 2.4 m for HST - collecting area of $25 \mathrm{~m}^{2}$ vs. $4.5 \mathrm{~m}^{2}$
- Diffraction limited spatial resolution at $2 \mu \mathrm{~m}$ similar to HST's at $\sim 700 \mathrm{~nm}$
- Imaging and spectroscopy covering 600nm - $28 \mu \mathrm{~m}$ (HST: $\sim 100 \mathrm{~nm}-2 \mu \mathrm{~m}$)
- NIRCam/JWST: 8×2048^{2} pix ($\left.0.6-2.3 \mu \mathrm{~m}\right)+2 \times 2048^{2}$ pix ($2.4-5 \mu \mathrm{~m}$) (WFC3/HST: 1024^{2} pix)
- JWST operates at L2, uses solar shield to block the light from the Sun, Earth and Moon

Capabilities of the JWST (in a nutshell)

- 6.5 m primary mirror vs. 2.4 m for HST - collecting area of $25 \mathrm{~m}^{2}$ vs. $4.5 \mathrm{~m}^{2}$
- Diffraction limited spatial resolution at $2 \mu \mathrm{~m}$ similar to HST's at $\sim 700 \mathrm{~nm}$
- Imaging and spectroscopy covering 600nm - $28 \mu \mathrm{~m}$ (HST: ~100 nm $-2 \mu \mathrm{~m}$)
- NIRCam/JWST: 8×2048^{2} pix ($\left.0.6-2.3 \mu \mathrm{~m}\right)+2 \times 2048^{2}$ pix $(2.4-5 \mu \mathrm{~m})$ (WFC3/HST: 1024^{2} pix)
- JWST operates at L2, uses solar shield to block the light from the Sun, Earth and Moon

The Nobel prize in Physics 2017 was awarded "for decisive contributions to the LIGO detector and the observation of gravitational waves."

Rainer Weiss (MIT)

Barry Barish (Caltech)

Kip Thorne (Caltech)

LIGO - A GIGANTIC INTERFEROMETER

LIGO - A GIGANTIC INTERFEROMETER

Systematic search for electromagnetic counterparts

- Large and complex sky localisation areas need to be searched over quickly for rapidly evolving transients for the identification of viable candidates for spectroscopic observations
- Gravitational-wave Optical Transient Observer (GOTO) being built on La Palma and Siding Springs Observatory in Australia: robotic, rapid-response system with $\sim 80 \mathrm{deg}^{2}$ field of view

GOTO on La Palma, Canary Islands

GOTO is led by University of Warwick and Monash University with Univ. of Turku a member of the consortium

Systematic search for electromagnetic counterparts

- Large and complex sky localisation areas need to be searched over quickly for rapidly evolving transients for the identification of viable candidates for spectroscopic observations
- Gravitational-wave Optical Transient Observer (GOTO) being built on La Palma and Siding Springs Observatory in Australia: robotic, rapid-response system with $\sim 80 \mathrm{deg}^{2}$ field of view

GOTO is led by University of Warwick and Monash University with Univ. of Turku a member of the consortium

Photometric and spectroscopic follow-up of the kilonova counterpart of GW170817

Time: -1225 days
Abbott+2017; Andreoni+2017; Arcavi+2017; Chornock+2017; Coulter+2017;
Cowperhwaite+2017; Drout+2017; Evans+2017; Kasliwal+2017; Lipunv+2017; Nichol+2017; Pian+2017; Smartt+2017; Tanvir+2017; Troja +2017; Utsumi+2017; Valenti+2018

Advanced astronomical instrumentation

Integral-field spectroscopy

Two dimensional original on-sky image

Optical slicing of the on-sky image
 3

5 $5 \times 2+8$ 6

Computer reconstruction of the 3D data cube

Spectrum of each 2D pixel

Computer reconstructed image

MUSE on the VLT

$$
0,0
$$

Big data!

- Vera C. Rubin Observatory with 8.4 m primary mirror
- 3.2 Gpixel camera (3.5 deg FOV; full moon ~0.5 deg)
- 1000 images per night - $9600 \mathrm{deg}^{2}$ ($41250 \mathrm{deg}^{2}$ in the whole celestial sphere)
- ~450 calibration exposures
- ~20 TB of raw data per 24 hr
- 107 "alerts" per night
- Final data: 0.5 Exabytes
- Final database: 15 PB

Petabyte $=1000 \mathrm{~TB}$
Exabyte = 1000 PB

- operational in end of 2023 !

1000 images (~ 20 terabytes of raw data) / night $\sim 10^{7}$ alerts per night
$\sim 10^{6}$ alerts per night
$\sim 10^{3}$ alerts per night
$\sim 10^{2}$ alerts per night

Already, the first phase of the SKA will produce $\mathbf{\sim} \mathbf{2 6 0}$ TB of raw data per second (~1 Exabytes per hour) !!

