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Spectral analysis



Fourier theorem

» Uncertainty relation between time (x) and frequency (§)
. Generallytsgeaking, the more concentrated f(x) is, the more spread out its Fourier transform
must be.

fo(é)

» Assumes stationarity of the signal



Fourier Transform Applications
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Overview of the Fourier transform of a truncated cosine wave.
A theoretically infinte cosine wave (A) multiplied by a
rectangular window (B) generates truncated wave C. The
Fourier transform of the cosine and the window in the
frequency domain are shown in E and (F). The transform of the
truncated cosine is the convolution of its components, shown in

(D).
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118 Fourier Transform Applications

pectrum
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Figure 7.7 Frequency analysis of a respiratory signal from a human neonate. An epoch
of the time domain signal is shown in (A) and the amplitude spectrum in (B). Clearly
the mazin pezk ~1.5 Hz shows the respiratory frequency, whereas the peak close to 3 Hz
is 2 harmonic due to the imperfect sinusoidal signal. The respiration signal, sampled 2t
1 kHz, is available on the CD (respiration.mat).
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Multitaper Spectrogram
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 Taper function is used to truncate
the data

» Shape of taper function affects
the data quality

* Multitaper has multiple taper
function applied and averaged to
increase the resolution



When using spectrograms



What are spectrographs used for?
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Example #2 Evoked potential data analysis

EEG responses to magnetic stimulation

Goal: To probe cortical dynamics, that is, obtain
time-amplitude description of the brains response
to a magnetic stimulus

w
Examples of TMS-evoked potentials following stimulation over the motor cortex (M1). At the top ’ 3 '
butterfly plots from all electrodes with timing of peaks indicated by arrows (note different ‘ ‘ \ ‘
amplitude scales between the two plots). The red line indicates the electrode under the coil (C3 \ 5 ’) \_’/ '\
- - -3

for M1). In the bottom half topographic maps of voltage distributions over time across the scalp o

A. T. Hill et al, ” TMS-EEG: A window into the neurophysiological effects of transcranial QQ G@ Gg qg q@ 49 l

electrical stimulation in non-motor brain regions”
Neuroscience & Biobehavioral Reviews 15ms 33ms 46ms 60ms 100ms 200 ms

Volume 64, May 2016, Pages 175-184

(top) and following source reconstruction (bottom) for each peak.




Structure of TMS—EEG data

channels

* 1 TMS pulse

» EEG recording

* n TMS pulses

* n EEG recordings

Average over trials Concatenation of the trials

channel 2

channel 3

Channels Average data
Channels | No averagedata - channel 4

Time points Time points

Julio C Hernandez-Pavon, Aalto University



"~ signal analysis processing of TMS-evoked EEG

1. Visual inspection of trials: you can reject bad trials if something
IS wrong...

Good trial Bad trial: muscle activity

Gooql _tyial Bad trial'; b.li'nk activity |

500ms 600



jl> Channels Average data

Time points




Filtering

Filtering is the process of
and

f f
Low-pass filter High-pass filter

fcl fc2 fc2  f

Band-pass filter band-stop filter

fc= cutoff frequency









Muscle artifacts




Muscle artifacts:

Amplitude (uV)

40 60 80 40 60 20 40 60 80 100 M u S C | e a rti fa CtS :

Time (ms) Time (ms) Time (ms)

1. They mask the
brain signals. 2-3
orders of magnitude
larger than brain
signals.

2. They last for tens of
Aalto Universit arp-
School of Science milliseconds (30 ms)

Korhonen, Hernandez-Pavon., et al., 2011, Hernandez-Pavon et al., 2012; Hernandez-Pavon et al., AIP proceedings
2014




Principle of ICA

Source 1 Mixture 1

Source 1
Mixture 1

Source 2

Source 2 f —_—
Mixture 2 Source 2 ources Source 3

Source 3

Source 3 Mixture 3

The EEG recordings are composed of mixed signals, i.e., brain responses and
non-brain sources, such as muscle artifacts.

Korhonen, Hernandez-Pavon, et al., 2011; Hernandez-Pavon, ef al., 2012.



e |ICA is a method for finding underlying factors or components from
multivariate (multidimensional) statistical data.

is an time-courses matrix.

e Their rows are the time-courses
(amplitudes) of the latent variables.



* Applying ICA requires additional steps (compressing extra dimensions,
whitening) that we will not go into detail...

/ //////////7//

S = W Xpite
X, WS
// / _ Estimated L

Preprocessing steps:

- Removing bad channels and trials

Set the zero potential level or reference potential
Centering (zero mean)

Compressing extra dimensions

Whitening
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32 independent components
e Some are EEG components

are artefacts

Results of ICA




 To help with decising which component

to remove, look at additional data

 Eye movement
» Topoplot frontal
 Periodicity in spectrum

t 3 properties

File Edit View Insert Tools Window Help

Component 3 topography Component 3 activity

Time {ms)
Activity power spectrum

20 30 40
Frequency (Hz)

ACCEPT I HELFP |
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 Tule of thumb: If your’re not sure wether Activity power spectrum

artefact or not, leave it alone!
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Removing muscle artifacts with ICA

Channel 8 Channel 12

— Compressed Data — Compressed Data
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Aalto University

School of Science

Korhonen R, Hernandez-Pavon JC, et al., Med Biol Eng Comput, 2011



Med Biol Eng Comput (2011) 49:397-407
DOI 10.1007/s11517-011-0748-9

Removal of large muscle artifacts from transcranial magnetic

stimulation-evoked EEG by independent component analysis

Reeta J. Korhonen ¢ Julio C. Hernandez-Pavon
Johanna Metsomaa + Hanna Miki -
Risto J. Ilmoniemi * Jukka Sarvas




Journal of Neuroscience Methods 209 (2012) 144-157

Contents lists available at SciVerse ScienceDirect

NEUROSCIENCE
METHODS

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

Computational Neuroscience

Uncovering neural independent components from highly artifactual TMS-evoked
EEG data

Julio C. Hernandez-Pavon®%*1 Johanna Metsomaa®?!, Tuomas Mutanen®®, Matti Stenroos?,
Hanna Maki2P, Risto J. IlImoniemi?:?, Jukka Sarvas?2
2 Department of Biomedical Engineering and Computational Science (BECS), Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Espoo, Finland

b BioMag Laboratory, HUSLAB, Helsinki University Central Hospital, P.O. Box 340, FI-00029 HUS, Helsinki, Finland
< Department of Physical Engineering, University of Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato, Mexico

» The muscle artifacts distort the topographies.

» The topographies are useful in source localization.
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(A) Objects all

Corrected

TMS—EEG
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What was achieved?




Example # 3 Source localization
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aited area within the brain

roscience Methods 256 (2015) 9-21
eth.2015.08.015




Source localization

25 propagate to the



Source localization




Source localization




Source localization, basic steps

MEG/EEG data analysis

MEG/EEG measurement

Signal processing
Improve signal-to-
noise ratio of the
signal components
of interest, e.g., by
averaging trials and
by filtering.

Source modelling
Estimate the
primary current
distribution (or its
statistic) given the
MEG/EEG data.

Visualization
Superimpose the
source estimate on
the anatomical MR
image




 Traditionally only scalp
electrodes were used

« Additional data point from
sampling the lower part of the
head

» Realistic, individual head model

J. Song et al. / Journal of Neuroscience Methods 256 (2015) 9-21




Spatial sampling

» Using simulated data, the effects of spatial sampling can be shown
as Localization Error Distance

(b) SLORETA

RED=whole head
Blue=upper head
Green= 10-20 system

32 64 n 128 16 21 32 64 7 128 256
Num. of Electrodes Num. of Electrodes

J. Song et al. / Journal of Neuroscience Methods 256 (2015) 9-21



Patient case

» Epileptic focus localized on the temporal
region

Fig.7. Spike Onset localized in a patient’s individual head model. (Top) 256-channel
butterfly plot of average spike waveforms from -200ms to 200 ms around spike
peak and global field power. Black bar indicates time of spike onset used in source
localization. (Bottom) Average spike scalp topography at onset.
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(b) sLORETA
whole 256 upper 128

whole 128

« Same patient as before, image
showing the bottom of the brain

 Localizations look different with
whole 64 different spatial sampling

e Compare especially upper head
vs. whole head (whole 128 vs
” upper 64)

Fig. 8. Spike Onset localized in a patient’s individual head model with MN and sLORETA. (a) MN and (b) sLORETA source distributions with different sensor distributions.

The right anterior temporal lobe was independently identified as the epileptogenic spike onset from intracranial data (and surgical outcome). Whole samples with MN and
SLORETA are correctly localized.






Conclusions




