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Spectral analysis

» Fourier theorem: any signal can be expressed as an infinite sum of
sine and cosine components

» Theoretically straightforward but biosignals have characterisrics
that complicate the analysis

* Namely, they are not stationary and contain periodic and non-
periodic components

» Solution is to analyse small periods of EEG and make an
assumption that the signal is approximately stationary in the time
period




Fourier theorem

f@)= [ e e

« Uncertainty relation between time (x) and frequency (&)

» Generally speaking, the more concentrated f (x) is, the more spread out its Fourier transform
f'(§) must be.

» Assumes stationarity of the signal



Fourier Transform Applications /
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Truncated
cosine

Overview of the Fourier transform of a truncated cosine wave.
A theoretically infinte cosine wave (A) multiplied by a
rectangular window (B) generates truncated wave C. The
Fourier transform of the cosine and the window in the
frequency domain are shown in E and (F). The transform of the
truncated cosine is the convolution of its components, shown in

(D).
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(B) Amplitude Spectrum
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Figure 7.7 Frequency analysis of a respiratory signal from a human neonate. An epoch
o the time domain signal is shown in (A) and the amplitude spectrum in (B). Clearly
the mazin peak ~1.5 Hz shows the respiratory frequency, whereas the peak close to 3 Hs

1 kHz, is available on the CD (respiration.mat).




Spectrogram
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Spectrogram




Spectral Bands Spectrogram
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Multitaper Spectrogram
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http://prerau.mgh.harvard.edu/

» Taper function is used to truncate
the data

 Shape of taper function affects
the data quality

* Multitaper has multiple taper
functions applied and averaged
to increase the resolution









Example #2 Evoked potential data analysis

« Evoked potentials are brain responses to a stimulus
» Transcranial magnetic stimulation (TMS)

» Other ways to elicit an evoked potential,
« E.g. auditory or visual stimulus

* Pricipal for all evoked potential (EP) data processing is the
same




Example #2 Evoked potential data analysis -

EEG responses to magnetic stimulation

Goal: To probe cortical dynamics, i.e., obtain
time-amplitude description of the brain’s response
to a magnetic stimulus




Structure of TMS—EEG data

* 1 TMS pulse
» EEG recording
* n TMS pulses

* n EEG recordings

Average over trials

Channels

Channels Average data

Time points

Time points

Structure of the Data

channel 1

channel 2

channel 3

channel 4

Concatenation of the trials

Julio C Hernandez-Pavon, Aalto University



TMS evoked potential (TEP)

Examples of TMS-evoked potentials following stimulation over the motor cortex (M1). At the top butterfly plots
from all electrodes with timing of peaks indicated by arrows (note different amplitude scales between the two
plots). The red line indicates the electrode under the coil (C3 for M1). In the bottom half topographic maps of
voltage distributions over time across the scalp (top) and following source reconstruction (bottom) for each
peak.

A. T. Hill et al, ” TMS-EEG: A window into the neurophysiological effects of transcranial electrical
stimulation in non-motor brain regions”

Neuroscience & Biobehavioral Reviews

Volume 64, May 2016, Pages 175-184
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https://www.sciencedirect.com/topics/neuroscience/motor-cortex
https://www.sciencedirect.com/science/journal/01497634
https://www.sciencedirect.com/science/journal/01497634/64/supp/C
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Good trial

1. Visual inspection of trials: you can reject bad trials if something
IS wrong...

muscle activity

Good frial Bad trial: blink activity

800 ms

-600 ) 600 ms -600
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Preprocessing steps:

2. Averaging the data

Trials

> Channels Average data

G EIEIN No average data

Time points Time points

3. Removing bad channels: poor electrodes connection, disconnected
channels

4. Filtering



Filtering

Filtering is the process of keeping components of the signal with certain desired
frequencies and removing components of the signal with certain undesired
frequencies.

fc f f
Low-pass filter High-pass filter

fc2 fc2 f

Band-pass filter band-stop filter

fc= cutoff frequency
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4. Referencing the average potential over the channels




Independent component analysis
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Muscle artifacts

Muscle artifacts:

1. Are most prominent when lateral areas of the head or areas
near the neck or forehead are stimulated.

2. Temporal and frontal muscles, and in some stimulation
positions, masseter muscle (one of the muscle of mastication)
are the most likely to be activated.



TMS-Artifacts1.avi
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Muscle artifacts:

1. They mask the
brain signals. 2-3
orders of magnitude
larger than brain
signals.

2. They last for tens of

Korhonen, Hernandez-Pavon., et al., 2011; Hernandez-Pavon et al., 2012; Hernandez-Pavon et al., AIP proceeding

milliseconds (30 ms)
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TMS-Artifacts1.avi

Source 1 Mixture 1

Source 1
Mixture 1

Source 2

Source 2 —_—
Mixture 2 Source 2

Source 3

Source 3

Source 3 Mixture 3

The EEG recordings are composed of mixed signals, i.e., brain responses and
non-brain sources, such as muscle artifacts.

Korhonen, Hernandez-Pavon, et al., 2011; Hernandez-Pavon, et al., 2012.



*ICA is a method for finding underlying factors or components from
multivariate (multidimensional) statistical data.

IS an time-courses matrix.

e Their rows are the time-courses
(amplitudes) of the latent variables.



 Applying ICA requires additional steps (compressing extra dimensions,
whitening) that we will not go into detail...

Input -
FastICA S =W X
o--pm =
Algorithm A =—-XS
in ICA Estimated L

Preprocessing steps:

1) Removing bad channels and trials

2) Setthe zero potential level or reference potential
3) Centering (zero mean)

4) Compressing extra dimensions

5) Whitening



Results of ICA

32 independent components

» Some are EEG components, some
are artefacts
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Component 3 topodraphy

* To help with deciding which component
to remove, look at additional data
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* Muscle artefact
» Topoplot
* High magnitude at 20-50 Hz

* Rule of thumb: If your’re not sure
whether artefact or not, leave it alone!
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Aalto University
School of Science

Removing muscle artifacts with ICA

Channel 8

— Compressed Data
— Automatic

Channel 12

Corrected

Amplitude (pV)

— Compressed Data
— Automatic

Time (ms)

Korhonen R, Hernandez-Pavon JC, et al., Med Biol Eng Comput, 2011

Time (ms)




Med Biol Eng Comput (2011) 49:397-407
DOI 10.1007/s11517-011-0748-9

ORIGINAL ARTICLE

Removal of large muscle artifacts from transcranial magnetic

stimulation-evoked EEG by independent component analysis

Reeta J. Korhonen * Julio C. Hernandez-Pavon -
Johanna Metsomaa + Hanna Miki -
Risto J. Ilmoniemi - Jukka Sarvas




Journal of Neuroscience Methods 209 (2012) 144-157

Contents lists available at SciVerse ScienceDirect

NEURDSe IENCE |
METHOD

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

Computational Neuroscience

Uncovering neural independent components from highly artifactual TMS-evoked
EEG data

Julio C. Hernandez-Pavon®%*! Johanna Metsomaa®P! Tuomas Mutanen?®®, Matti Stenroos?,
Hanna Maki2P, Risto J. Imoniemi?:?, Jukka Sarvas?

* Department of Biomedical Engineering and Computational Science (BECS), Aalto University, School of Science, P.O. Box 12200, FI-00076 Aalto, Espoo, Finland
b BioMag Laboratory, HUSLAB, Helsinki University Central Hospital, P.0. Box 340, FI-00029 HUS, Helsinki, Finland
¢ Department of Physical Engineering, University of Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato, Mexico

» The muscle artifacts distort the topographies.

» The topographies are useful in source localization.
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What was achieved?

» Highly artefactual (muscle activation) data was cleaned

» Brain topographies (voltage maps) at different time points after
the TMS pulse are obtained

 Source localization estimates
* Dynamic information on the underlying brain activity

» Other possible applications include complexity measures that
allow the evaluation of conciousness in unresponsive patients
(vegetative, minimally conciouss, locked-in?)



Example # 3 Source localization




a ins de the brain is
activity or evoked

ivated area within the brain

‘nat of | eUroscience Methods 256 (2015) 9-21
0.1016/j.jneumeth.2015.08.015



https://doi.org/10.1016/j.jneumeth.2015.08.015
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Source localization

EEG Brain sources




Source localization -




Source localization, basic steps

MEG/EEG data analysis

MEG/EEG measurement

Signal processing
Improve signal-to-
noise ratio of the
signal components
of interest, ¢.g., by
averaging trials and
by filtering.

Source modelling
Estimate the
primary current
distribution (or its
statistic) given the
MEG/EEG data.

Visualization
Superimpose the
source estimate on
the anatomical MR
image




 Traditionally only scalp
electrodes were used

» Additional data points from
sampling the lower part of the
head

» Realistic, individual head model

J. Song et al. / Journal of Neuroscience Methods 256 (2015) 9-21




Spatial sampling

» Using simulated data, the effects of spatial sampling can be shown
as Localization Error Distance

(b) sSLORETA

RED=whole head
Blue=upper head
Green= 10-20 system

21 3z 64 ral 128 2 az B4 71 128 256
Mum. of Electrodes Mum. of Electrades

1. Song et al./ Journal of Neuroscience Methods 256 (2015) 9-21




Patient case

» Epileptic focus localized on the temporal
region

Fig.7. Spike Onset localized in a patient’s individual head model. (Top) 256-channel
butterfly plot of average spike waveforms from -200 ms to 200 ms around spike
peak and global field power. Black bar indicates time of spike onset used in source
localization. (Bottom) Average spike scalp topography at onset.
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(b) SLORETA

whole 256

whole 128

whole 64

whole 32

upper 128

« Same patient as before, image
showing the bottom of the brain

* Localizations look different with
different spatial sampling

« Compare especially upper head
vs. whole head (whole 128 vs
upper 64)

Fig. 8. Spike Onset localized in a patient’s individual head model with MN and sLORETA. (a) MN and (b} sLORETA source distributions with different sensor distributions.
The right anterior temporal lobe was independently identified as the epileptogenic spike onset from intracranial data {and surgical outcome). Whole samples with MN and
sLORETA are correctly localized.
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Example #4 Brain Computer Interface
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Conclusions

» Several signal prosessing methods are available

« Matlab is a poverful tool and dedicated software packages are
available

 Spectral distributions are excellent for visualizing large amounts
of data

» Several approaches for removing noise (filtering, ICA, spectral
properties of the signal)

* Signal processing techniques are being continually developed
» Also new application emerge in clinical and for research purposes




