Radio interferometry

Kaj Wiik

Tuorla Observatory

Summer 2018

Based partly on 'Essential radio astronomy' from http://www.cv.nrao.edu/course/astr534/Interferometers1.html and http://www.cv.nrao.edu/course/astr534/Interferometers2.html by J. J. Condon and S. M. Ransom.

◆□▶ ◆ 同▶ ◆ 国▶ □ □ 1/34

Interferometry-2

Sensitivity and amplitude calibration

Imaging - modelfitting

▲□▶▲圖▶▲臺▶ 臺 2/34

Antenna response:

$$K = \frac{\eta_a A}{2k} 10^{-26} = \frac{A_{eff}}{2k} 10^{-26} = \frac{T_a}{S} \left[\frac{\mathrm{K}}{\mathrm{Jy}} \right] = \mathrm{DPFU} \qquad (1)$$

System response **SEFD**: what amount of source flux increases the system noise as much as the noise of the receiving equipment when $T_a = 0$:

$$SEFD = \frac{T_{sys}}{DPFU} = \frac{2kT_{sys}}{A_{eff}} \cdot 10^{-26} \quad [Jy]$$
(2)

Baseline sensitivity for antennas *i* and *j* (η_s = system efficiency):

$$\Delta S_{ij} = \frac{1}{\eta_s} \sqrt{\frac{\text{SEFD}_i \cdot \text{SEFD}_j}{2\Delta\nu\tau_{int}}} \quad [Jy]$$
(3)

Sensitivity and amplitude calibration

The number of baselines L is:

$$L = \frac{1}{2} \cdot N \cdot (N-1), \qquad (4)$$

◆□▶◆圖▶◆臣▶ 臣 4/34

where N = number of antennas.

Image sensitivity I_m is standard deviation of mean of L samples (baselines),

$$\Delta I_m = \frac{1}{\eta_s} \sqrt{\frac{\text{SEFD}_i \cdot \text{SEFD}_j}{N(N-1)\Delta\nu\tau_{int}}} \quad [\text{Jy/beam}]$$
(5)

There are three basic methods to produce images from interferometry data:

- Fitting a source model to the visibilities.
 - Possible to get images even from a noisy and sparse dataset.
 - Accurate source parameters: emission component sizes, shapes, and locations.
- Inverse transform of the visibilities and deconvolution.
 - ► No a-priori control of source shape ⇒ somewhat more objective approach.
 - Clean (many variants), maximum entropy method (MEM) most important deconvolution methods.
- Direct inversion using Compressed Sensing algorithms (in development)

Sampling of the (u,v) plane

G. Taylor, Summer Synthesis Imaging Workshop 2006

Visibility versus (u,v) radius

G. Taylor, Summer Synthesis Imaging Workshop 2006

Visibility versus time

Amplitude across the (u,v) plane

G. Taylor, Summer Synthesis Imaging Workshop 2006

Projection in the (u,v) plane

G. Taylor, Summer Synthesis Imaging Workshop 2006

1(

Fourier transform properties

 $F(u,v) = \mathrm{FT}\{f(x,y)\}$

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \exp[2\pi i (ux + vy)] \, dx \, dy$$

Linearity

$$FT{f(x, y) + g(x, y)} = F(u, v) + G(u, v)$$

Convolution

$$FT{f(x, y) \star g(x, y)} = F(u, v) \cdot G(u, v)$$

Shift

$$FT\{f(x - x_i, y - y_i)\} = F(u, v) \exp[2\pi i(ux_i + vy_i)]$$

Similarity

$$\operatorname{FT}\{f(ax, by)\} = \frac{1}{|ab|} F\left(\frac{u}{a}, \frac{v}{b}\right)$$

◆□▶◆圖▶◆臣▶ 臣 11/34

Radio interferometry

There is very little difference in the uv-plane between different source profiles down to the relative half flux level.

◆□▶◆圖▶▲厘▶ 厘 12/34

Simple source structures

Component separation from the uv-radius (in wavelengths) of the first valley (k3/S), size of individual emission region (d [arcsec]) from the uv-radius of the half-value point of the envelope (k2/d). Amplitude is normalized.

Simple source structures, example

First valley at 100 M $\lambda = k_3/S$, envelope half-value point 300 M $\lambda = k_2/d$.

Double source, component separation $S = k3/100M\lambda = 103000/100e6 = 0.001 \operatorname{arcsec} = 1 \operatorname{marcsec}$. Component size $d = k2/300M\lambda = 91000/300e6 = 0.0003 \operatorname{arcsec} = 300 \,\mu \operatorname{arcsec}$

Imaging - modelfitting

Component separation from the valley-to-valley distance (k1/S).

Imaging - modelfitting

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ 三 16/34

Trial model

- By inspection, we can derive a simple model:
- Two equal components, each 1.25 Jy, separated by about 6.8 milliarcsec in p.a. 33^e, each about 0.8 milliarcsec in diameter (Gaussian FWHM)
- To be refined later.

Projection in the (u,v) plane

G. Taylor, Summer Synthesis Imaging Workshop 2006

Parameters

- Example
 - Component position: (x,y) or polar coordinates
 - Flux density
 - Angular size (e.g., FWHM)
 - Axial ratio and orientation (position angle)
 - For a non-circular component
 - 6 parameters per component, plus a "shape"
 - This is a conventional choice: other choices of parameters may be better!
 - (Wavelets; shapelets* [Hermite functions])
 - * Chang & Refregier 2002, ApJ, 570, 447

Practical model fitting: 2021

2021: model 2

Model fitting 2021

2021: model 3

G. Taylor, Summer Synthesis Imaging Workshop 2006

Yhdistämällä useita teleskooppeja toisiinsa pystyttiin ottamaan ennätystarkka kuva mustan aukon suihkusta. Kuva Pier Raffaele Platania INAF/IRA (kompositio); Lebedev Instituutti (RadioAstron)

03.04.2018 | Sakari Nummila

Tähtitieteilijät loivat maapalloa suuremman teleskoopin

Tuomas Savolainen käytti tähtitieteen historian tarkinta havaintolaitetta tutkiakseen mustan aukon synnyttämää plasmasuihkua. Tulokset paljastivat uutta tietoa jättiläismäisten suihkujen rakenteesta.

Letter

A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii

G. Giovannini 🖏 T. Savolainen 🏝 M. Orienti, M. Nakamura, H. Nagai, M. Kino, M. Giroletti, K. Hada, G. Bruni, Y. Y. Kovalev, J. M. Anderson, F. D'Ammando, J. Hodgson, M. Honma, T. P. Krichbaum, S.-S. Lee, R. Lico, M. M. Lisakov, A. P. Lobanov, L. Petrov, B. W. Sohn, K. V. Sokolovsky, P. A. Voitsik, J. A. Zensus & S. Tingay

Nature Astronomy **2**, 472–477 (2018) doi:10.1038/s41550-018-0431-2 Download Citation Received: 16 October 2017 Accepted: 27 February 2018 Published: 02 April 2018

Radio interferometry

Imaging - modelfitting

Example: Optical astronomy

Center for High Angular Resolution Astronomy

http://www.chara.gsu.edu

Imaging - modelfitting

Example: Optical interferometry, Algol and Beta Lyrae

Interacting Binary Beta Lyrae

Imaging - modelfittin

WRINKLES IN SPACETIME The Warped Astrophysics of interstellar

BY ADAM ROGERS

< ロ > < @ > < E > < E</p>

"Whoa. That's beautiful."

- Interstellar viewers Many who believe the film to be nothing more than a work of fiction.

"Whoa. That's true."

- Kip Thorne

Kuspnix

American theoretical physicist and one of the world's leading experts on the astrophysical implications of Einstein's general theory of relativity.

Imaging - modelfitting

Example: EHT imaging simulation of a black hole in the center of M87, deconvolution

From Akiyama et al. (A&A 2017) https://arxiv.org/pdf/1702.00424.pdf

▲ □ ▶ ▲ 🗇 ▶ ▲ 볼 ▶ 🗄 32/34

Example: EHT imaging simulation of a black hole in the center of M87, uv-coverage

Figure 2. The *uv*-coverage of the simulated observations. Each baseline is split into two colors to indicate the corresponding two stations.

Imaging - modelfitting

https://launchpad.net/apsynsim

◆ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > □ = 34/34