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You have your calibrated visibility data. 
Now what? 

1. Fit simple brightness distribution 
models to the visibility data. 

 Pros: 
- Works also with poorly sampled and 

noisy data 
- Visibilities have well-defined noise 

properties 
- Resolution better than Rayleigh limit 

achievable for high SNR data 
Cons: 
- Works only with simple source 

structures  
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You have your calibrated visibility data. 
Now what? 
2. Recover an image by using inverse 

Fourier transform:  
𝑰 𝒍,𝒎 =  ℱ−𝟏 𝑽 𝒖, 𝒗

≡  𝑽 𝒖, 𝒗 𝒆𝒊𝟐𝝅 𝒖𝒍+𝒗𝒎 𝒅𝒖𝒅𝒗
∞

−∞
 

 Pros: 
- Complex structures can be studied 
- No need to assume certain brightness 

distribution 
Cons: 
- Requires well-sampled visibilities 
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Aperture synthesis 
concepts 
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Aperture synthesis 
• In principle, inverting 𝑉 𝑢, 𝑣 =  𝐼(𝑙,𝑚) 𝑒−𝑖2𝜋(𝑢𝑙+𝑣𝑚)𝑑𝑙𝑑𝑚 gives 

the sky brightness distribution. This however requires measuring 
𝑉 𝑢, 𝑣  everywhere in the (u,v) plane. Not possible! 

• In reality, we aim to sample 𝑉 𝑢, 𝑣  sufficiently well in order to 
constrain 𝐼(𝑙,𝑚). What is sufficiently well? Well, that is a 
complicated question… In any case “(u,v) coverage” is one of the 
main decisive factors between a high quality image and rubbish.  

• To do well, we want: 
• Many telescopes, since the number of instantaneous (u,v) samples is 

N(N-1), where N is the number of telescopes 
• Long synthesis time for changing baseline projections as Earth 

rotates. However, be careful if the source is variable! 
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Examples of (u,v) plane sampling 
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VLA 
Visibility sampling for a VLA 
snapshot 



Examples of (u,v) plane sampling  
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Examples of (u,v) plane sampling 
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Sources at 
different 
declinations 



What does (u,v) coverage mean to  
your image? 

• Outer boundary limits the 
angular resolution 

• Inner boundary limits the 
sensitivity to large-scale 
emission structure 

• Imperfect sampling in-between 
limits the image fidelity – there 
is information missing! 
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VLBA – 11h track 



Formal description of a discrete 
sampling of the (u,v) plane 
Visibility plane is sampled at discrete points given by sampling function:  

𝐒 𝒖, 𝒗 = 𝜹(𝒖 − 𝒖𝒌)𝜹(𝒗 − 𝒗𝒌)
𝒌

 

If we take an inverse FT of the sampled visibility function, we get a “dirty” 
image: 

𝑰𝑫 𝒍,𝒎 = ℱ−𝟏(𝑺 𝒖, 𝒗 𝑽 𝒖, 𝒗 ) 
Convolution theorem says: 

𝑰𝑫 𝒍,𝒎 = 𝒃(𝒍,𝒎) ∗ 𝑰 𝒍,𝒎  
So, 𝑰𝑫 𝒍,𝒎  is a convolution of the true sky brightness distribution and the 
interferometer beam:  

𝒃 𝒍,𝒎 = ℱ−𝟏(𝑺 𝒖, 𝒗 ) 
 

Interferometric imaging lecture 6.10.2015 
19 



Interferometer beam 
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ℱ 
⇋ 

(u,v) plane sampling Interferometer beam 



Dirty image 
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= ∗ 

interferometer beam dirty image source structure 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

2 stations 
25 min 

 
 

Dirty image Æ 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

4 stations 
25 min 

 
 

Dirty image Æ 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

6 stations 
25 min 

 
 

Dirty image Æ 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

8 stations 
25 min 

 
 

Dirty image Æ 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

10 stations 
25 min 

 
 

Dirty image Æ 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

10 stations 
5 hours 

 
 

Dirty image Æ 



Example: Beam shape with increasing 
number of (u,v) samples 
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Å(u,v) coverage 
 

10 stations 
11 hours 

 
 

Dirty image Æ 
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Imaging process in 
practice 
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A note about practical Fourier 
transformation 
• Fast Fourier Transform (FFT) is 

typically used to invert the data, 
since it is much faster than direct 
FT (𝒪(𝑁2 log2 𝑁) vs. 𝒪(𝑁4) ) for 
an image of N × 𝑁 pixels and 
~𝑁2data points 

• FFT requires data points on a 
rectangular grid Æ V(u,v) needs to 
be interpolated and resampled for 
FFT 
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Remember this? Despite 11 hours with 
10 antennas, the dirty image is useless! 

Interferometric imaging lecture 6.10.2015 
36 

Å(u,v) coverage 
 

10 stations 
11h track 

 
 

Dirty image Æ 



Going beyond the dirty image – 
deconvolution   
• There exists an infinite number of solutions 𝐼𝑠 𝑙, 𝑚  that satisfy 𝐼𝐷 𝑙, 𝑚 =

𝑏(𝑙, 𝑚) ∗ 𝐼 𝑙, 𝑚 . This is because there exist functions 𝑍 with 𝑍 ∗ 𝐵 = 0. 
Therefore, if 𝐼𝑠 𝑙, 𝑚  is a solution, so is 𝐼𝑠 𝑙, 𝑚 +  α𝑍(𝑙, 𝑚), if no extra 
constraints exist. Traditional linear deconvolution methods do not work! 

• Typically one uses non-linear deconvolution algorithms to interpolate and 
extrapolate the part of the visibility function that was not measured.  

• These methods  require some form of regularization. This means that we 
need some a priori assumptions about the source structure in order to 
recover it. Luckily, quite simple assumptions suffice: 1) finite source size, 
2) positivity of the true brightness distribution, 3) smoothness of the true 
brightness distribution.   
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Deconvolution with CLEAN algorithm 
 
CLEAN is the most widely used algorithm (implementations in 
CASA, AIPS, Difmap …) 
• Fits and subtracts the interferometer beam iteratively 
• Original version by Högbom (1974), several improvements later 
• Assumes that source structure can be presented as a sum of a finite 

number of point sources 
• User can supply a priori information by restricting the area at which 

CLEAN is allowed to work (“CLEAN windows”) 
• Has problems with diffuse emission (creates “spotty” structures) 
• Instabilities: striping around extended sources is a common artefact 
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Deconvolution with CLEAN algorithm 
 Basic algorithm: 
Initialize: residual map = dirty map and list of δ-
components = empty 
1. Find the peak in the residual map, identify it 

as a point source 
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Deconvolution with CLEAN algorithm 
 Basic algorithm: 
Initialize: residual map = dirty map and list of δ-
components = empty 
1. Find the peak in the residual map, identify it 

as a point source 
2. Subtract this point source, scaled by 

loop_gain and convolved with the 
interferometer beam, from the residual 
image 
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Deconvolution with CLEAN algorithm 
 Basic algorithm: 
Initialize: residual map = dirty map and list of δ-
components = empty 
1. Find the peak in the residual map, identify it 

as a point source 
2. Subtract this point source, scaled by 

loop_gain and convolved with the 
interferometer beam, from the residual 
image 

3. Save the position and subtracted flux to the 
list of δ-components 
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Deconvolution with CLEAN algorithm 
 Basic algorithm: 
Initialize: residual map = dirty map and list of δ-
components = empty 
1. Find the peak in the residual map, identify it 

as a point source 
2. Subtract this point source, scaled by 

loop_gain and convolved with the 
interferometer beam, from the residual 
image 

3. Save the position and subtracted flux to the 
list of δ-components 

4. If stopping criteria are not met, go to step 1 
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Deconvolution with CLEAN algorithm 
 
• Stopping criteria? Target noise level reached, target SNR reached, or  

some maximum number of iterations reached. 
• Final step – make “restored” image:  

• Make a model image from the final list of δ-components  
• Convolve the model image with a “CLEAN beam”, which is typically 

a Gaussian fitted to the central peak of the interferometer beam 
• Add the last residual map to present the noise 

• The resulting image is an estimate of 𝐼 𝑙,𝑚 .  
• The units are typically Jy / clean_beam_area. 
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CLEAN example  
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CLEAN iterations 
= 0 

Residual image CLEAN image (log) Dirty image 



CLEAN example  
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CLEAN iterations 
= 100 

Residual image CLEAN image (log) Dirty image 



CLEAN example  
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CLEAN iterations 
= 500 

Residual image CLEAN image (log) Dirty image 



CLEAN example  
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CLEAN iterations 
= 1500 

Residual image CLEAN image (log) Dirty image 



Other deconvolution methods 
Maximum entropy method 
(MEM) 
• Assumes that 𝐼 𝑙, 𝑚  is as smooth 

as possible 
• Minimizes the pixel variance, while 

keeping 𝜒2of the fit acceptable 
• Works better than CLEAN in 

extended and diffuse sources 
• Fails to remove sidelobes, if there is 

a point source on top of an 
extended source 
 

Multi-scale CLEAN 
• Promising results for extended 

emission 
Non-negative least squares 
• Directly solves for the (point source) 

model parameters assuming 
positivity 

• If the source is small, a unique 
solution may exist 

Compressed sensing methods 
• Based on sparsity of the data, 

implementations minimize 𝐿1-norm 
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Reading (and watching) material 
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• Thompson, Moran & Swenson: “Interferometry and Synthesis in 
Radio Astronomy”, Wiley (2004)  

• Taylor, G. B., Carilli, C. L. & Perley, R. A.: “Synthesis Imaging in 
Radio Astronomy II” ASP Conference Series Vol. 180 (1999) 
• Contents available online, look in the NASA ADS 

• J. A. Zensus, P. J. Diamond, and P. J. Napier: “Very Long Baseline 
Interferometry and the VLBA” ASP Conference Series, Vol. 82, 
(1995) 
• Book available online: http://www.cv.nrao.edu/vlbabook/ 

• NRAO Synthesis imaging school 2014 lectures are online 
• https://science.nrao.edu/science/meetings/2014/14th-synthesis-imaging-

workshop 

 

https://link.springer.com/book/10.1007/978-3-319-44431-4	




