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Learning objectives

After the the lecture you should know the basic
concepts of:

=Reconstruction workflow: from raw data to
Images, data corrections, practical examples

=Analytical and iterative reconstruction algorithms:
FBP, MLEM, OSEM

Y /
< c
s f v

C>

D
L

8,
4

/\/&l
% (®

"o \J

ersity of Turku e Abo Akademi University e Turku University Hospital




Definitions

0 LOR = Line of response between two detectors
0 TOF = Time of flight

0 List-mode data, sinogram = PET raw data used for data
representation and reconstruction

0 FBP = Filtered BackProjection, analytical reconstruction
algorithm

0 MLEM = Maximum Likelihood Expectation Maximum,
iterative reconstruction algorithm

0 OSEM = Ordered Subset Expectation Maximum, iterative
reconstruction algorithm
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Further information

Contact people at Turku PET Centre ]
- Researcher, Jarmo Teuho (jarmo.teuho@tyks.fi)
- Assistant Prof. Riku Klen (riku.klen@utu.fi

OMEGA
https:/ /github.com/villekf/ OMEGA

CASTOR

- https://www.castor-project.orqg/
STIR/SIRF
= http:/ ;stlr.sourcefor:ge.net[
. ps://www.ccppetmr.ac.uk/node/1
NiftyRec _ _
http: / /niftyrec.scienceontheweb.net/wordpress/

CASTOR

- https:/ /castor-project.org/
ASIM /thDMéé I

ttp:/ /depts.washington.edu/simset/html/user guide/user quide index.ht

m
-  https://depts.washington.edu/asimuw/

GATE/GEANT

- http://www.opengatecollaboration.org/

Homepage of J.Fessler:
. ttps:/ /web.eecs.umich.edu/~fessler/

Adamr“Kesners Medical Physics Pages:

ttps: fulbrigh mail.org[kesnersmedicalghysics[home[e
ucafion ruction-explained-with-animated-gifs
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Texbooks for Later Reading

IAEA Medical Physics Handbooks
- Radiation Oncology Physics: o ]
https://www.iaea.org/publications/7086/radiation-oncology-physics
= Diagnostic Radiology Physics: ] ] ] ]
httpls: [ /www.iaea.org/publications/8841/diagnostic-radiology-physics
. uclear Medicine Physics: = o ]
- https://www.iaea.org/publications/10368/nuclear-medicine-physics

Radiation Oncology. Diagnostic Radiology. Nuclear Medicine

Physics Physics

Physics

Radiation Oncelogy Physics: Diagnostic Nuclear Medicine Physics
4 Rantboot e Toachary aad Sladents Radlology A Handbook for Teachers and Students
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Sinogram Formation,
Forward Projection

S

|

Integration along
all LORs at fixed ¢

Sinogram

Figure 2. A projection, p(s,©). is formed from integration along all parallel LORs at an angle ¢). The projections are
organized into a sinogram such that each complete projection fills a single row of ¢ in the sinogram. In this format, a
«  singlepointin f(x,y) traces a sinusoid in the sinogram.
és PET Image Reconstruction
"SRKJ2¢  Adam Alessio and Paul Kinahan
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Lines of response between PET detectors  Corresponding location in sinogram
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Backprojection

pls.0)

Backprojection along all
/ LORs at a fixed o.

Figure 6. Backprojection, b(X,y;©) . into an image reconstruction array of all values of p(s,0) for a fixed value
( f
éﬁ Q PET Image Reconstruction
A \, Adam Alessio and Paul Kinahan
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Reconstructed image Sinogram
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Practical Example
One 2D Sinogram

Each sinogram
represents the data
acquired for a slice
across all angles
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Displacement

The sinogram is a
two-dimensional
histogram of the
LORs in distance
and angle
coordinates

After data corrections and
image reconstruction, the
“image is a pixel-by-pixel
representation of the
radiotracer concentration
at scan time.

FIGURE 1. Sinogram formation. Coincidence events in PET scanner are categorized by plotting each LOR as function of its angular

orientation versus its displacement from center of gantry. (A) Center of gantry is noted by cross (X), and locus of interest (e.g., tumor) is noted

by ellipse. Four LORs passing through locus of interest are labeled A, B, C, and D. (B) These 4 LORs are plotted on this sinogram where

angular orientation is on y-axis and displacement from center of gantry is on x-axis. If all possible LORs that pass through this point are

o MEo plotted, it maps out half of sine wave turned on its side as shown here. (C) Sinograms of more complicated objects, such as sinogram of brain
«* ‘o scan shown, are composed of many overlapping sine waves. (D) Reconstructed brain image corresponding to sinogram in (C) is shown.
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2363 Data Acquisition in PET Imaging, Frederic H. Fahey
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Reconstruction Workflow
a Data corrections
0 Workflow from raw data to PET images

2 Practical example with LM-OSEM
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QoW .
ersity of Turku » Abo Akademi University e Turku University Hospital

11



Data Corrections

a Power of PET is in quantification, which requires accurate data
corrections to be implemented

a  With analytical algorithms such as FBP the data are corrected before
reconstruction

0 Corrections are incorporated in the reconstruction loop in iterative

algorithms, such as OSEM:
Detector geometry, normalisation of detector efficiencies, detector dead-time
Attenuation, scatter, random events
Resolution recovery (PSF), TOF-specific corrections
Image regularisation parameters

0 Calibration from counts to activity units (kBg/ml) and correcting for
radioactive decay are also performed

a Post-smoothing (e.g. 3D Gaussian with FHWM in mm) is applied to control
the noise in the images, although some expections apply (e.g. Q.Clear,
blob-RAMLA)
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From Raw Data to PET Images

Data
corrections

Sort to sinograms

List mode
data

Histogram

Split list en bed position/time/gate
Divide list intochronclogical subsets
Order each subset geometrically

/

Prompt list w ctrl word
(phi, r, za, zb, tof)

Apply decay, deadTime |, xtalTime
detMorm correction

/" Delay
LOR sino /

Prompt
LOR sino ¥
Decay, deadTime, detNorm
correction

Interp to small sino

-
=1

Subtract random

Random

Decay, deadTime, detNorm
carrection

| Interp to small sina |

| Smooth |

Random
small sino

Atten
img

Prompt-delay
small sino

Scatter

SS8S

Subtract scatter

RAMLA w
attenCorr

Emission
) / img ;

Back-interp random & scatter small
sino into LOR, apply atten correction.

Pre-recon listw/o ctrl word
(phi, r, dz, z+bp, tof, g, bg)

Whele body
image

/ /

Scatter
small sino

Final corrected sinogram

Final, quantitative PET image

ersity of Turku » Abo Akademi University e Turku University Hospital




Data Corrections In
Image Reconstruction

Pre-2004 >

lterative Reconstruction

Randoms N Deadﬁmzf Radial qu adr:ant Attenuation
Correction ormalization Repositioning catier Correction
Correction Correction

1 Niog Pj

ﬁn+1 — fi“ <

a;;
Ej:i?“aj:,,-laj. =1 » Zilaj,,-,f,-?
i=1,...,P
Fa
Iterative Reconstruction w/ Distance Driven Projectors
o Rocil Randoms Quecon
Correction Repositioning Correction Correction Correction
N . r.+5.
f‘nﬂ_f'n 1 fﬂﬂ-- PJ+2rJ'+SJ
. sV, Jo, = Siaa ff oL (2F, +5,)
j=r Hia t Ty r=17 g FAS IR

Mid-2007 i=1,...,P

3

Iterative Reconstruction w/ Distance Driven Projectors

Ngi?:g;ﬁ:m g: ol;c;?r Randoms Volume Scatter Attenuation
Y Correction Correction Correction

Correction Modeling
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A relaxed List Mode Ordered Subset Expectation
Maximization (LMOSEM) algorithm

Algorithm-specific lambda
multi
;}i’,m _‘)}'.Ir_m—l< (1—/1)+— Z affenHTDF l'llf']? [
Ji = Ji ¢ ; ji N-1 -
i jesubset m ﬁfﬁm Z H;GF ‘ff + E}?dd

- Attenuation correction n=0 ’\ /
where 5. = > T H "

‘ System matrix, TOF-specific

all possible jesubset m
adtime ., xtaltime

multi xtaleff . det geom __ decay

et = gl et seom pdecer ppecdime

add det geom

b Nf\\ (f YORRY )”7 Sensitivity image/system matrix, TOF-spe

Multiplicative correction factors
Additive corrections: scatter, randoms
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Where Do I Get a System

Model?

Contents lists available at ScienceDirect

Computerized Medical Imaging and Graphics

B

FEL.SEVIER journal homepage: www.elsevier.com/locate/compmedimag

Computerized
Medical Imaging
and Graphics

Review
System models for PET statistical iterative reconstruction: A review

A. Iriarte®-*, R. Marabini®, S. Matej<, C.0.S. Sorzano®¢, R.M. Lewitt*®

A Department of Information and Telecommunication Systems, University CEU San Pablo, 28668 Madrid, Spain
b Escuela Politécnica Superior, Universidad Auténoma de Madrid, 28049 Madrid, Spain

© Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA

d National Center of Biotechnology (CSIC), 28049 Madrid, Spain
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Reconstruction Algorithms

a Analytical vs Iterative
a FBP
a MLEM

a OSEM
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Analytical Reconstruction
Algorithms

0 One way to represent the imaging system is with the following
linear relationship:
= p = Hf +n, where p is the set of projections, H is the known system
model, f is the unknown image, and n is the error in the observations.

0 Analytical reconstruction techniques use the inverse of the discrete
Radon transform to solve this problem, offering a direct
mathematical solution for the image f from measured projection p.

« Advantages: scales linearly with the acquired counts
« Disadvantages: system model H is assumed ideal, poor noise
handling/propagation, streak artifacts

0 Background reading (e.g. Two-dimensional central slice
theorem):
- Image Reconstruction Algorithms in PET, Michel Defrise, Paul E Kinahan
and Christian J Michel
« PET Image Reconstruction, Adam Alessio and Paul Kinahan
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Filtered Backprojection (FBP)

a Most frequently used analytic reconstruction algorithm is the filtered
backprojection (FBP) algorithm

0 The goal of FBP reconstruction is to compute the the image f(x,y) from
projections p(s,$) by:

F{p(s.0) }}do

(R

fan=fey= [ FH{ww,)

a In algorithmic form:
1D Fourier transform of p(s,$)
Multiplication with a ramp filter v,
Apply a smoothing function/window W(v,)
Inverse Fourier transform of the filtered projections
Backproject across all angles to image space

0 We will consider a 2D case in the next slides, specific considerations apply
to 3D case => homework ©
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1. for all angles ¢ Reference object
a) 1D Fourier transform into frequency space
px, @) = Py, @)
b) multiplication with ramp filter v,
PF(UIP’ ) = P(Uxﬁ‘-’ q)) er
¢) inverse 1D Fourier transform of filtered projections
into projection space:
Py, @) = pfx, @)

2. backprojection f(x, y) = J Pix, @doe

Sinogram

30

20

FBP (ramp filter) Backprojection (no ramp filter)

35

Performing mere backprojection
versus applyinging
backprojection after multiplication
with a ramp filter in Fourier
space.

30

25

20
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1. for all angles ¢ Reference object

a) 1D Fourier transform into frequency space D H

p(x, @) = P(vy, @)
b) multiplication with ramp filter v,

PF(UIP’ (p) = P(UJCP‘J (p) er

¢) inverse 1D Fourier transform of filtered projection

into projection space:
Applying additional filtering windows: FBP (Hann filter) FEP (ram fiten)
Hann, Hamming, Shepp-Logan, etc. /\1
. o ' i
Noise regularization is frequency [ i
selective (cutoff & window) =>
trade-off between resolution and noise.

Pi(uy, @) = p"(x, @)
2. backprojection f(x, y) = J Pix, @doe
%
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0 Iterative reconstruction, benefits:
= Can model the noise in the measurements + include a realistic system model
= Improved image quality (contrast, lesion detection, ..)
= Reduced / no streak artifacts, potentially less sensitive to missing data

0 Iterative reconstruction, pitfalls:
= Greater computational demands
= Non-linear behavior => FBP is considered “gold standard” in certain measurements

0 Basic components:

= Model for the image (pixels, voxels, blobs)
Model for the system H (characterizing the imaging system) that relates image to data (probability
that an emission from voxel is detected in projection%
Model for the data (statistical relationship between the measurements and expected value, e.g. a
Poisson model) => objective function

= Governing principle that defines the “best” image (e.g. Maximum Likelihood = ML)

= Final component: algorithm that finds the best image estimate (e.g. an image, which is a solution
of @ maximization of‘ an objective function => maximizes the Poisson-log likelihood function)

- In general, the algorithms themselves are only discussed/referred

- Two widely used approaches for finding the ML estimate: MLEM and OSEM
- Apply to both 2D and 3D data (e.g. 2D-OSEM, 3D-OSEM)
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Image and , Poisson Likelihood function,

system model el model for the data
N pixel f; AP A% /// Pi
= ~ A g A A _ _ 1Pl exp=p)
Pi = E :H{f’fj g, cagie L(P=pl))= H T
/=1 AR A e i=1 P
. / //// " b
Detection process o :
is modeled in the e Search for an image f that makes the
system matrix measured data most likely to occur at
argmax() of Poisson log-likelihood
- - Algorithm
Image at nt"iteration
J \ Measured data
‘/ (emission sinogram)

(n)
]( (n+1) f

H
2 H, S, "ZH&;‘J“

\ \ Forward projected

System matrix image at nthiteration
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Initial estimate Forward projected estimate

’ ‘ ( Image Domain Projection Domain
7 LA 1) Forward Project
f”” ) j; I to all projections
L J > H "
:

Updated image T 2) Compare Forward projected estimate

with measured
4) Update Image projections
(and Weight Based on
~ System Matrix) —_r .
‘ HiA j; -
3) Backproject ¢
ratio to all voxels

H Backprojected estimate
i (n)
\ z pICAE T

Updated image

Figure 10. Flow diagram of the maximum likelihood-expectation maximization algorithm.

Starting with an initial image guess ( f ©) in the upper left, the algorithm iteratively

chooses new image estimates based on the measured projections, p.
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®7

OSEM

Ordered Subsets Expectation Maximization (OSEM) was introduced to reduce
reconstruction time of conventional MLEM.

OSEM uses subsets of the entire dataset for each image update in the form:

(n)
f (n+1) _ f Z
J E i E (n)
Hlj IES) H:kfk !

i Eérb

The backprojection steps sum over only the projections in subset $b of a total of b
subsets, which are non-overlapping.

Therefore, the image is updated during each subiteration and one complete iteration will
have b image updates, allowing faster convergence over MLEM.

When there is only one subset (b = 1), OSEM is the same as MLEM. However, although
OSEM resembles MLEM:

It is not guaranteed to converge to ML solution (in practice, convergence is similar to MLEM)
It has more image variance at the same bias level compared to MLEM
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Slice Number: 35 Slice Number: 40

0.6 0.6
OSEM OSEM
0.4 MLEM | | 0.4 MLEM
0.2
0 . . . .
0 50 100 150 1] 50 100 150
Slice Number: 45 Slice Number: 50
0.6 0.8
OSEM OSEM
0.6
0.4 MLEM | | MLEM
0.4
0.2
0.2
0 0
1] a0 100 150 0 50 100 150

OSEM: 1 subset, 8 iterations
MLEM: 8 iterations
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Slice Number: 35 Slice Number: 40

0.6 0.6
OSEM OS5EM
0.4 MLEM | | 0.4 MLEM
0.2
0 . . . .
0 50 100 150 0 50 100 150
Slice Number: 45 Slice Number: 50
0.6 0.8
DSEM DSEM
0.6
0.4 MLEM | | MLEM
0.4
0.2
0.2
1] 0
0 50 100 150 0 50 100 150

OSEM: 2 subsets, 4 iterations
MLEM: 8 iterations
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Slice Number: 35 Slice Number: 40

0.6 0.6
OSEM DSEM
0.4 MLEM | | 0.4 MLEM
0.2
D 1 1 1 1
1] 50 100 150 0 50 100 150
Slice Number: 45 Slice Number: 50
0.6 0.8
OSEM 06 DSEM
0.4 MLEM | | : MLEM
0.4
0.2
0.2
0 0
1] 50 100 150 1] 50 100 150

M
)
¢
<
EF

5 ﬂ\\ﬁ OSEM: 2 subsets, 4 iterations
o\ - -
AS Sk MLEM: 8 Iterations

e

ersity of Turku e Abo Akademi University e Turku University Hospital




Accurate and Consistent Lesion Quantitation with
Clinically Acceptable Penalized Likelihood Images

Evren Asma', Member, IEEE, Sangtac Ahn', Member, IEEE, Steven G. Ross?,
Anthony Chen” and Ravindra M. Manjcshwar'. Member, IEEE
'Functional Imaging Laboratory, General Electric Global Research Center, Niskayuna, NY, 12309
2General Electric Healthcare, Milwaukee, W1, 53188

Fiur .
- (w5 — aw)? e | | |
R(ix) = Wi Whe Y — Now _ Y — _ N — 3 -

X) - ;‘; itk Z; + ok + 7|25 — x| P(x) L y; log([Px]; + b;) — ([Px]; +b;) — BR(x)

i=1 /
Advantage: full convergion of the Control the end-

reconstructed image appearance of image
Phantom and Clinical Evaluation of the Bayesian Penalized | _"° 11 7 -7 7T T-T-T-1
. . . . E g0
Likelihood Reconstruction Algorithm Q.Clear on an LYSO 5 o
2 50 £ - ol il -l il Tl e i
PET/CT SyStem g ~~~~~ OSEM
¢ * H__x__i———k’l’—l/x/i/] OBEMIRSE
Eugene J. Teoh*!-2, Daniel R. McGowan*2*, Ruth E. Macpherson', Kevin M. Bradley!, and Fergus V. Gleeson!-> E 20 TGk
O 100 200 200 400 500 600 700 800 900 1000
MEp, Beta

FIGURE 2. Graph of mean residual LE for OSEM (2 iterations, 24 sub-
sets, 6.4-mm filter), OSEM PSF (3 iterations, 24 subsets, 2-mm filter),
and Q.Clear (B = 100-1,000). Error bars shown are 1 SD.
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FIGURE 4. Coronal PET images demonstrating '8F-FDG-avid liver metastasis across OSEM and Q.Clear reconstructions. Smooth homoge-
neous appearance of background liver on Q.Clear reconstruction renders metastasis more conspicuous than OSEM PSF. Conversely, there is
also risk of false-positive findings for small foci on OSEM PSF reconstruction because of high level of background noise. All images are
displayed on SUV scale 0-6.

2 (2 (4 (4 . :
W - * e - ~
OSEM PSF B200 B300 B400 B500 OSEM

FIGURE 5. Axial PET images demonstrating '8F-FDG-avid 7-mm right upper lobe lung nodule. This was mildly '8F-FDG-avid on OSEM, but
degree of uptake was shown to be higher using Q.Clear reconstruction. Despite similar degree of uptake on OSEM PSF, there was still low level of
background noise from within lungs, which was reduced even on B200. Improvement in background noise within mediastinum, compared with OSEM
PSF, is also illustrated. All images are displayed on SUV scale 0-6.

.« Teoh, E. J., et al. Phantom and Clinical Evaluation of the Bayesian Penalized

éj( ,5 Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System. J.

2¢ Nucl. Med. 56, 1447—1452 (2015).
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B=300 SEZ0[0 B=500

Figure 2. Automatic image segmentation of [13N]-NH3 images showing successful segmentation

for all reconstructions. An automatically drawn 1 x | x | cm volume at the mitral valve plane

represents the position of the left ventricular image-derived input function (IDIF). Images are

displayed on the same window width and level.

Teoh, E. J., et al. Phantom and Clinical Evaluation of the Bayesian Penalized
Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System. J.

Nucl. Med. 56, 1447-1452 (2015).
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Deep Learning for PET Image Reconstruction

Andrew J. Reader, Guillaume Corda, Abolfazl Mehranian, Casper da Costa-Luis, Sam Ellis and
Julia A. Schnabel, JEEE Senior Member
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Parametric Image
Reconstruction

PET Parametric Imaging: Past, Present, and Future
Guobao Wang . Senior Member, IEEE, Arman Rahmim ™, Senior Member, [EEE, and Roger N. Gunn

Parametric Images {6}

Direct Parametric Imaging

Glucose Metabolism

K; ml/g/min

0.05
’ 0.045
R 0.04

%
0.035

¢
0.03
C 0.025
= 0.02

-.= Noisy TAC
—— Fitted ¢(8) 0.015
- A

0.01

0.005

~ Scantime (min)

== == =2 Indirect method === Direct method
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Ultrafast timing enables reconstruction-free
positron emission imaging

Sun Il Kwon @5, Ryosuke Ota?®, Eric Berg'®, Fumio Hashimoto®?, Kyohei Nakajima3, lzumi Ogawa?,
Yoichi Tamagawa®, Tomohide Omura?, Tomoyuki Hasegawa* and Simon R. Cherry @

One source

Positron—electron

annihilation d
2 Detector B

d
a Detector A EI\ +*
f, = dy/c EJ 511 keV Photon 511 keV Photon Iy = dg/c
E <{ Xt Imaging object
b 0
d dPEI 0 E ;

b No-TOF PET

0
y: =30 -20 -10 O 10 20 30
y-position (mm)
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Possible Topics for Project
Work / Master’s Thesis

Currently available:

0 GATE simulations with several PET systems

0 Evaluation of open source reconstruction software

0 PET flow phantom construction and evaluation

0 Application of deep learning for PET and MRI image
segmentation (and other)

0 Establishing a software pipeline for ASL data processing

Past / ongoing fprojects:

0 Development of pseudo-CT for PET/MR and MR-RT

0 PET system evaluation (clinical and preclinical) using
standard and custom phantom measurements

0 Application of deep learning for image analysis

0 QC tools and software for evaluation of imaging devices
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Interested?

nContact: Jarmo Teuho (jarmo.teuho@tyks.fi or
jatateu@utu.fi)

aoWe got an large (and fun) group for you to work

with, participate and support you during your thesis
work!

aUnderstanding on programming with Python,

MATLAB, etc. is preferred in addition to theoretical
background

QSee pages at:
https://sites.utu.fi/instrimpro/en/
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