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Learning goals

Basic understanding in:  In zoom session, please

How MRI data is organized leave questions/comments
Goals of MR image processing to the chat, | will answer
Concepts of common MRI data them at the end of the talk

processing steps

Tool(s) useful for each particular R O o
processing step, are marked with | b

blue bold font




What is post-processing and why it
IS important?

Addressing this part

4 )

.........

..........

metrics eTreatment
decision

Goals of post-processing:
* Assure data quality

e Salvage otherwise unusable or dubious data

* Apply model fitting to obtain their specific parameters
 Compose information not available with mere manual inspection



N O 0 BN

Outline

Data organization

MR Data modalities
Image formats

Quality Assurance
Image processing steps
Radiomics

Artificial Intelligence



1 Data organization
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Data organization: Components

Medical imaging data is multi-dimensional signal

Voxel (X xY xZ mm3)

|
|
2D Slice,

3D Volume

3 Observed data
} Slice thickness (mm)

Slice gap (mm)

v V

4D Image (time, b-value, weighting, etc.)

Dimensions (X x Y x Z x W voxels)



Data: Continued

Isotropic voxel Oversampled acquisition

—(] voxel (XXxYxZmm?3)

Observed data

Anisotropic voxel Slice thickness (mm)

—(] voxel (XXxYxZmm?3)

* Voxel shape and Undersampled acquisition

sampling is |mportant > Observed data
when analysis

considers information } Slice thickness (mm)
in 3D

e Slice gap and
anisotropic voxel
cause extra data loss
when image is rotated

Slice gap (mm)

- _l"LL




Data: Orientation

Image data is collected in transaxial/coronal/sagittal slices in
respective to the scanner

In addition, subject may be positioned in various orientations
into the scanner, depending on the acquisition procedure

Posterior

Superior

£

Anterior

Right
Inferior

Left



Data: Orientation

* Visualization conventions:

— Radiological convention: Subject right is on the left
— Neurological convention: Subject right is on the right

* How do | know which way is up/left/front in the

image?
— localize anatomical landmarks (e g Yakovlevian torque, heart etc.)
— consult data (e g DICOM tags (0018,5100), (0020,0020), (0020,0037))
— localize stereotaxic marker (e g fish oil capsule)

— : it Radiological Neurological
consult person responsible for acquisition - AU

Yakovlevian torque



2 MR Data modalities




MR Image modalities
— T1W (3D), T1 relaxation time

» gadolidium contrast agent (paramagnetic)

— T2W (3D), T2 relaxation time
— DWI, Diffusion Weighted Imaging (4D)
— DTI, Diffusion Tensor Imaging (4D)

* DWI with diffusion encoding directions, minimum of 6

— Others

 fMRI (BOLD signal)
* FLAIR (FLuid Attenuation Inversion Recovery)

* Contrast enhanced images (injected contrast agent
enhances signal, 3D/4D)

— Non-invasive (apart from contrast agent)
e Comparison to X-ray, CT, PET, SPECT no radiation
* Magnetic field may limit use




Group - Element | Description Type I Length | Yalue

[£] o002 0000 Group 0002 Length uL 4 200

[£] oooz ooot File Meta Information Version OB 2 (binary data)

l‘i] 0002 0002 Media Storage SOP Class UID Ul 26 1,2.840.10008.5.1.4.1.1.7

lﬂ 0002 0003 Media Storage SOP Instance UID Ul 54 1.2.826.0.1,3680043.2.1208,34945545565201041914916296

EI 000z 0010 Transfer Syntax UID Ul 18 1.2.840.10008.1.2

% 00oz 0012 Implementation Class UID Ul 18 1.2.804.114118.3

E"l 000z 0013 Implementation Version Name SH 6

[£] oooz o016 Source Application Entity Title AE 18

[Z] o002 o100 Private Information Creator UID ) 0 {empty)

[£] oooz 0102 Private Information OB 0 {binary data)

[£] 0008 0005 Spelific Character Set 12 1SO_IR 100

% 0008 0003 Imgae Type GINAL\PRIMARYVOTHER
oo1z2 Insance Cre:#m
0013 Insance Crea

0016
0018

00z0
0021

0030
0031
003z
0033

00s0
0060
0064
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00s0
0090

SOH Class LI s}

SOR Instance UID IT 5 1.2, 201041914916296
Study Date DA 10 20100419
Series Date DA 10 20100419
Study Time ™ 14 140916.000000
Series Time ™ 14 140916.000000
Acquisition Time ™ 14 140916.000000
Content Time ™ 14 140916.000000
Accession Number SH 2

Madality cs 4 OT

Conversion Type cs 4 WSsD
Manufacturer LO 4 1IS

Institution MName LO 2

Referring Physician's Name PN 2



Image data formats

* DICOM (Digital Imaging and Communications in Medicine,
pydicom, matlab)
— Most common image format in hospitals
— Used in both storing and transferring image data
— Data stored is commonly as one file/slice

— Original image data acquired at the MR scanner is usually DICOM,
possible that some data loss occur in conversions

* Nifti (nibabel, matlab, all main visualization tools support this)
— Convenient for image processing
— One file per 3D/4D image

* Others: mnc (MINC toolkit), vtk (visualization toolkit), nrrd,
mhd (Slicer3D)



Summary

 Most important things to understand before
analysis:
— What is the modality
— Isotropic or anisotropic voxel, spatial resolution

— Which way is subject left/right, anterior/
posterior







Quality Assurance

* Quality Assurance composes of automatic or semi-automatic
methods to verify that the data is valid for particular use

— While target region ultimately determine if the data is acceptable, artefacts
outside it may indicate that the target region may be compromized

* Image Quality consists of
— Spatial resolution
— Image Contrast
— Signal to Noise Ratio (SNR)

— Artefacts
* Motion
* Susceptibility
* Inhomogeneity
* Other
* Please see https://radiopaedia.org/articles/mri-artifacts-1 for more exhaustive list



Quality Assurance

Quality Assurance methods
— Visual inspection for artefacts (by one or more persons)
— Sanity checks for data integrity (data organization, reference region)
— Noise profile
— Artefact detection (automatic/manual)
Things to consider in addition to image quality
— Fit for particular use (e g inclinical application)
— Repeatability (needs specific measurements, with test-retest setting)
— Reproducibility (needs specific measurements, e g with phantom)

MRI scan is a compromise between scan time and quality
— In practice we need to compromise

Image quality is not good enough, then what?
— Some problems can be addressed afterwards, others not



Quality Assurance:Tools

Vendor (Siemens, Philips, GE, etc) specific visualization at workstation (DICOM, 3D/4D)
— limited scalability
— fit for particular use
fsleyes (fsl toolbox's visualization tool Nifti, 3D)
—  part of fsl tools (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), designed mainly for brain
—  fusion imaging, support for DTI
eddyQC(fsl quality control tool for DTI)
— creates quality control report for DTI data
MRiIcron (Nifti, 3D)
Slicer3D (DICOM, Nifti, 3D/4D)
— most extensive list of features
— learning curve more steep
ITK-SNAP (DICOM, Nifti, 3D/4D)
— light-weight viewer opening almost any image
DTlprep (nrrd)
— DTl specific quality assurance tools
DSlstudio
— DTl specific visualization, contains tracktography pipeline
Carimas (developed at Turku PET Centre)
—  PET specific tool can be used with MRI data as well



In addition to QC of individual
image: image quality at group level

Intraclass Correlation coefficient (ICC)

Contrast between
measurement variance
and difference between
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Summary

Early detection of problems is less costly
— In best scenario, the acquisition can be repeated
— In worst scenario, diagnosis quality is compromised

When doing quality control, things to look for:
— Missing data
— Artefacts
e Correct if possible
— Signal-to-Noise ratio
— Is a data quality problem occurring at random?

* e g patients may express more motion artefact than healthy >
measurement is about artefact rather than actual target tissue



T2 sequence

<+ | ROI drawing

DWI sequences \
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5 Image processing

steps
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Statistical analysis:
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Where to process the data

In practise, large data/processing is run on servers

Standardized image visualization may need specific
monitors

The trend is towards OS independent processing

Patient anonymity!

i

=

Workstation Laptop

Scanner Server
workstation (data/processing)



Image processing steps

Artefact removal

Signal modelling

Region of Interest (ROI) placement
Radiomics

Computation of diagnostic/prognostic scores



Artefact removal




Gibbs Ringing  wavesice fe space

e Abruptly truncating
signal in k-space
introduces
“ringing” to the
Image

* To fix: mrxtrix
degibbs
— Removes ringing

artefact if present




Eddy Current correction

* Eddy currents result from gradient magnetic fields

— Eddy currents generate their own magnetic fields, which

distort the spatial and temporal performance of the
overall desired magnetic field.

/

—
_—

Eddy current distortion in DTI




native slice fft space

Motion )
artefact ncodine

direction

* Occurs within
(see right) and
between slices
and volumes

* Tools (between
volumes motino
correction): fsl
eddy, mcflirt,
ANTs




Motion correction

* Approaches for assessing motion

— Motion suppression by means of acquisition setting
(positioning, pillows etc)

— Protocols/sequences optimized to address motion
(PROPELLER, navigator images, oversampling etc.)

— Post-processing
— |If possible, estimate occurred motion, and use as covariate

* With multi-volume MRI data, eddy current distortion
is corrected at the same time with motion



Motion
correction
example

Estimated motion

Mean dislocation : 9.976763 [mm)]

Mean translation: (x y z)=(4.531128, -7.783876, -3.033722) [mm]
Mean rolation: (x y z)=(1.405032, 0.362363, -3.988247) [degree]

Transistion
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N/2 Ghosting artefact

« Shifted trajectory is sum of 2 Effect of 1 voxel shift
shifted undersampled trajectories
(or single undersampled
trajectory)

« Causes aliasing (“N/2 ghosting™)

 To fix;: measure shifts with
reference scan, shift back in

reconstruction
Undersampled  Undersampled Acquired
Fourier space Fourier space Fourier space




I m a ge N O i Se native slice fft space

* Noise arises from target
tissue and scanner

* Noise is additive in phase
and magnitude data,
theoretically resulting
Rician noise in
reconstructed image

* To fix: mrtrix dwidenoise

— Aims to remove noise
according to Marchenko-
Pastur theorem for image
data components, in
separation signal from
noise




DTl Noise removal example:
Pre-clinical murine with PCA

B, A02 B, A02 A02 117)f117x200 A02 117x/117x200 LPCA

117x117x200 117x117x200
LPCA

'.S Improyed
! tracktography

LPCA = Localized
Principal
Component Analysis
noise removal

Improved BO
image




Distortion correction

Magnetic susceptibility
eDegree of magnetization in responce to ° Magnetization processes at a

applied magnetic field

different rate than expected, and

2 reconstruction places the signal at
the wrong location

Inhomogeneity of BO

field : :
: * Correction Opl‘lOﬂS

Q — 1) Specifically acquired field maps

— 2) Acquire opposite blip direction image,

Geometric distortions fsl topup

— 3) Estimate distortion using anatomical

Q reference e g T1IW image SynBO0 tool
Anatomical

inaccuracies




Distortion
correction
example:
Separately
acquired field
map

l\gtu@ma
V\*Ujitugret@ted) voll

PHase (feofiented)ivoll

Br, ask v

DWIsBO vol1:




Distortion
correction
example:

TOPUP

blip down blip up

BO down-up vo. '
@ ’;"' I “:g‘
BO down-up vo. ,
0 = I ,:.I

B(Grior VQ o
’ 4 f‘,"‘




Partial Volume Effect

 Correct for Partial Volume
Effect (PVE)

— Potential spill-over frome g




Summary

 Many of the artefacts in the image can be
avoided by better optimization of acquisition

* Motion, susceptibility and noise may need to
be addressed with post-processing



Signal Modelling

At this point we assume data is all good,
now doing the actual image processing

“All models are wrong, but some are useful”
- George Box, statistician




Signal Modelling

Modelling is usually done for each individual voxel in
the image, although sometimes for ROl mean values

Parameter estimates in medical imaging can be used
as biomarkers - objective measure capturing of what
is happening in a cell or an organism at a given
moment

Model parameters have a level of unspecificity:
Parameter value may have multiple different
physiological interpretations at cell or organism level

In medicine, ultimate criteria for good parameter is
usefulness in clinical context



Modelling TIW/T2W

* T1IW

— T1 times depend strongly upon magnetic field strength 1.5T, 3T, 7T
etc.

— In brain, T1 have support to detect changes in water content, myelin,
fiber orientation, iron

e T1IW/T2W ratio

— can be used a measure for myelin, axon/dendrite density, iron content

matlab, python
e T1W: Voxel Based Morphometry (VBM) SPM
— gray matter 'density’ Axon terminal
Node of
& Soma Ranvier
Axon I
Do
Schwann cell
Mechelli A, Price CJ, Friston KJ, Ashburner J. Voxel-based morphometry of the human brain: methods
and applications. Current Medical Imaging. 2005 Jun 1;1(2):105-13. Myelln sheath

Nucleus https://en.wikipedia.org/wiki/Dendrite



Modelling DWI

Brown, 1827: Continuous and
spontaneous random motion of pollen | s
grains suspended in water, with j
microscope

Einstein, 1905: Brownian motion, i. e.
random motion of particles in a fluid

Tools: C code dlib
www.github.com/haanme,
matlab, Carimas, python dipy etc.



Modelling DWI

* Most common DWI measure
is Apparent Diffusion
Coefficient (ADC):
—Microcapillary perfusion
—Fluid homogeneity
—Macromolecules
—Cellular density
—Cell membranes integrity

Free diffusion Restricted/Hindered —Microstructural organisation
diffusion

Isotropic, Isotropic,
unrestricted restricted
diffusion diffusion

Physiological example values of ADC — % G

. . rajecto:

* 0 um/s? - No diffusion e /

(free water) (random barriers present)

(e g water in a glass) Diffusion

Ellipsoid

e 3.0 um/s? - Free water [ y
y

3.0 um/s?  <3.0 um/s?



Apparent Diffusion Coefficient

example: Prostate Cancer
T2W ADC Higtology

g
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1
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.
o

‘o
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. -IJ
~ . R - B N
More signal More
loss at E> diffusion of E> Less dense
higher b- water tissue
values particles
J \, J \, J
- . N - - R -
Less signal Less
loss at diffusion of More dense
. . Tumor
higher b- water tissue
7o Values | particles | 1§ ) [

hhhhhhh



Modelling DWI: Monoexponential

S(b) = S,e P e 5(0)
Monoexponential:

- Single exponential decay

- ADC can be generally considered
to reflect tissue density:

A\ less dense tissue

WV more dense tissue

Sl

350 f

300 ¢

250

200 f

150

100 ¢

50+

Mono
Strecthed
Kurt
BiExp

®* Data

S(500)

$(2000)

500 1000 1500 2000
b-value



Modelling DWI: Other models

Stretched exponential
S (b) = 5 Oe_(bADCsn'eched)a

Kurtosis model
Sb)=S,e

i Lo 2
(=bADC kurtosis +gb ADC /curfasz'.s-K )

Intra-voxel Incoherent Motion (IVIM)
Biexponential

S(b) 4 S ((1— e I fe20)



Modelling: Stretched exponential

450

S(b) S ~ADC srcpes ) Mono
400 Strecthed
Stretched exponential: T
. . 350 ¢ BiExp
- Heterogeneity index a reflects * Data
composition of multiple 300

exponentials ol

Sl

- a < 1 for more than -

one exponential present

. 150 ¢
A more homogenous tissue

WV more heterogenous tissue i

50+

0

0 500 1000 1500 2000
b-value



Modelling DWI: Kurtosis model
S(b) = So o (=BADCptosis +b 2ADC?, . K)
Kurtosis:

- K reflects deviation from Gaussian

shape, physically associated with
structure

- Based on Taylor series expansion '

of signal
A more structures in tissue  pwi signal \ Kurtosis
In(S(b)/S(0
WV less structure (S(e)/5(0) effect
1000 2000 3000

b-value



Modelling DWI: Bi-exponential

S(b)=S,((1- f)e™ + fe ")

Biexponential:

- Df and Ds reflect fast and
slow exponential decays

- Interpretation depends
on used b-values, and the

tissue under study DWI Signal
In(S(b)/S(0))

1000 2000 3000

b-value



Modelling IVIM

(IntraVoxel Incoherent Motion)

S(b) = So | (1=F) €74P% P + Fpe7 PG = 40|

Le Bihan D, Radiology 1988

IVIM:
- Mathematically the same a IVIM
bi-exponential model effect

- Difference arises from the
acquired b-value samples at

range of IVIM effect DWI Signal
In(S(b)/S(0
b-value < 200 s/mm? n(5(b)/5(0)

- D* (pseudodiffusion)

reflects blood perfusion 100 200

b-value

1000



Modelling DWI: Example of
prostate cancer parameter maps

DWI models reveal different contrast with tumour and within
tumour, with data from the same DWI acquisition



Anisotropic,
restricted

. ) . diffusion
Modelling DTI pitsion /
- DTI model assumes one 3D ellipsoid instead /
of sphere

(coherent axonal bundle)

- Convention is to use DTl in brain white

Z
matter (WM) e
. . . . . Diffusion
- Tools: fs| dtifit, DSIstudio, mrtrix, diffusion Ellipsoid X
toolkit

- DTl scalar interpretations:

Fractional Anisotropy (FA): Diffusion D. D, D,
ANhigh integrity of fibers Wlow integrity Tensor b, D, D,
DXZ Dyz DZZ
Mean Diffusivity (MD): Dendrite Ao terminal
A less dense tissue WV more dense tissue | et
Soma Ranvier
Axial Diffusivity (AD): " d I%
healthy fibers axonal injur (
() y jury o, 'g ».
Radial Diffusivity (RD): pr—— Schwann cell
A myelin loss WV more myelin Nuclels e

https://en.wikipedia.org/wiki/Dendrite



Modelling DTI: E>I<ample brain
e

'h : .--':'--"--:: -
0 . 1

Mean Diffusivity Fractional Anisotropy

Mean Diffusivity shows dense white matter (blue, middle)
Fractional Anisotropy map highlighting white matter integrity (bright blue, right)




DTI Tracktography

e Streamline algorithm (repeat to cover seed region, e g 10k times):

1. Start from a location in source region
2. Move along voxels along their major eigenvector
3. End when stop region is reached

4. Repeat from step 1.

* Deterministic tracktography: One streamline per seed
location DSIstudio, trackvis

* Probabilistic tracktography: Distribution of all streamlines
from all seed voxels fsl bedpostx probtrackx

vector directions ,
S n FA map :




DTI Tracktography: Example of
Deterministic tracktography

Eigenvectors on FA map Tracktogram sagittal 2 mm Tracktogram coronal
view view
Voxel of size 2x2x2 mm?3 can contain el |
approximately from ~0.5 million E I 4y Q&
axons to >5 million axons! V4 AS

Walhovd, K.B., et al., 2014. Neuroscience, 276, pp.2-13.



DTI Tracktography: Connectomy
matrix

Tracktography can be executed e g
between pairs of gray matter regions,
creating connectomy matrix, of size N x

N regions
N, where N is the number of brain A
regions matlab, python l R |=1
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DTI Tracktography: Example of
Probabilistic tracktography

Murine TBI model right somatosensory cortex as seed
region, arrow points corpus callosum where seed
region connects to the opposite side




Region of Interest (ROI) placement



Region of Interest (ROI) placement

* Manual delineation
— laborous
— intra/inter-reader variability

e Automatic delineation

— Atlas-based ANTs, elastix, SPM,
fsl fnirt, Freesurfer:

* Procedure: 1) align image to template 2)
bring atlas to individual space 3) may
require manual edits/QA

— Surface segmentation
Freesurfer




6 Radiomics

A radiomic feature is an extracted
measure value from radiology data

Field of study about radiomic
features is Radiomics



Radiomics

Conventional analysis method is to take mean intensity (or
median) in the ROI

Radiomic feature extraction involves calculating other metrics
from the voxel intensities inside ROI

— Statistical descriptors (e g skewness, kurtosis percentiles)
— Texture features (i e features describing textures)
— Shape features (e g surface curvature, sphericity)

— Automatic features (deep learning framework) or Hand-
crafted features (by design)

Performance in particular may depend on

— Spatial resolution

— Signal to noise ratio

— Overall intensity level
Field of study about radiomic features is called Radiomics
Tools: pyradiomics, MRC tools, pytorch, tensorflow




2w 3D Whole Gland 2w 3D Lesion masking
masking standardization using prostatectomy

Radiomic
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Radiomics at group level:

Repeatability vs clinical performance

1
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Radiomics: Feature selection

* Feature selection:
— Selection of most relevant features relevant to the given problem
— Crucial part of machine learning

— Techniques
« MRMR (Maximum Relevance Minimum Redundancy) algorithm
e Univariate analysis

* Tools: R mRMRe, python scikit-learn, pearson/spearman

correlation between features, t-test/wilcoxon rank sum test
for target groups, repeatability of features



Computation of diagnostic/
prognostic scores: Models

Radiomic metrics can be used
directly as biomarkers

Nomogram be used to combine
multiple variables into one score

Decision trees give detailed
information about the logic of how
classification is made

Regression models

as large functions
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7 Artificial Intelligence

At this point all measurements are done,
now giving output for clinical use

metrics Ll
e Treatment
decision




Artificial Intelligence

Artificial Intelligence (Al) is used to tackle problem

of large data
— Itis hard for human to benefit from all large amounts of
multidimensional data
Al can be used as a tool assisting analysis of
radiologist in Computer Assisted Diagnosis (CAD)

— CAD for region of interest INPUT >
— CAD for direct diagnosis/prognosis

Pros & Cons of Al

INPUT >
— Pro: Al is repeatable: no intra-reader or inter-reader variation

with the same input
— Con: black-box nature
* We do not know exactly why the Al tool gives certain

specific answer — only that the answer is based on training

data

INPUT >

> OUTPUT

> OUTPUT

> OUTPUT




Artificial Intelligence

Machine learning is generally used to train classifiers
— Makes use of both radiomic features and clinical variables
— Tools: R packages of: stats (GLM), rms (homogram),

neuralnet (ANN), rpart (decision trees), python scikit-learn

Deep learning is specific type of Machine Learning,

where neural networks have many internal layers,

making the 'deep’ architecture

— Input is either 2D (image slice) or 3D/4D (image volume,
multiple channels)

— Require high amount of data and processing power

Machine Learning
General Linear Model

Nomogram

Neural Networks

Decision trees

— Tools: python pytorch, tensorflow, require CUDA

Deep
Learning



Machine Learning

e Steps for doing machine learning:

W N

Preprocessing of data to uniform format
Feature Extraction

Data split

Training/Evaluation

Machine Learning
*  General Linear Model
*  Nomogram

*  Neural Networks

. Decision trees

Deep
Learning

(Final test of fixed developed models)




Training Al
Data is typically divided into training and testing set, used to verify

that the trained model captures correct signal and is not
overfitting to data

Separate test data is created by dividing the available data into

portions

— Stratification: ensure same proportion of groups are represented in both training and
testing

Testing set is sometimes called 'unseen’, 'external’, or 'hold out'

— Not used in any method development/adjustments

For designing training strategy and developing models use training
set

External
Unseen Test Set

Training Data

/VIR S
Usel Sy duence

Training Data [ NGNOSHONIDAIEN




Cross-validation

e Typical N-fold cross-correlation analysis:
— Data is split to folds
— Each fold is used as validation set in turn to create estimate for performance

— Running cross-validation multiple times causes multiple trials problem:
likelyhood that we get good performance score by chance increases

e Cross-validation is used to obtain

Actual model for
Unbiased estimation of generalization ] # inference
performance In contrast to
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
- Training Training
Data Data
Training Training
Data Data Training Data
Data -
Training




Nested Cross-validation

Nested cross-
validation (double

cross-validation):

Cross-validation is repeated
multiple times

Each repetition average score
is calculated (as in cross-
validation) with independent
Test set (Inner Test)

Inner layer is used multiple
times to choose model,
hyperparameters, etc.

Outer layer gives unbiased
estimator of generalization
performance for the whole
process

yer

Outer la

A

Inner
Test

Inner

Fold 1

Fold N

Training Training -
Score 1
\
Average score from
Inner layer cross-validation
Inner
Test
Inner
Training External

Unseen Test Set




Deep learning network example:
' 2D U-net CNN

input
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Performance

Deep learning

Convention is to use one validation set since execution of
evaluations is costly, even with GPU

Validation set is used to see how well the model performs in
external data

When validation performance starts to drop while training
performance increases, model started to overfit to the data

Ending criteria is also part of the model development, so external
test set is needed to verify the performance of trained model

External Test User

External Test Set

Overfitting, stop training!

External Test Site

lterations (epochs) External Test Vendor

External Test Sequence

Training Data [ validation Data |




Machine Learning in Medicine

* Prevalence of a condition/disease may be
small

e Usually only one sample per case

* Proper Ground Truth —data not always
available



Thank you!

Any questions relating to MRI data
processing?



