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Outline

• Aperture synthesis – visibility sampling
• Solving the inverse problem
• Image quality and error recognition
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Recap: Visibility functionℱ sky
brightness distribution

The relationship between the visibility function 𝒱𝒱(u,v) and the sky 
brightness distribution I(l,m) is a 2-D Fourier transform (assuming a 
small field of view and neglecting the w-coordinate):

𝒱𝒱 𝑢𝑢, 𝑣𝑣 = ∬𝐼𝐼(𝑙𝑙,𝑚𝑚) 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢+𝑣𝑣𝑣𝑣)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Let’s assume that you have a well-calibrated visibility data set. The next step 
is to turn this data set into an image. 
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Aperture synthesis
• In principle, inverting 𝒱𝒱 𝑢𝑢, 𝑣𝑣 = ∬𝐼𝐼(𝑙𝑙,𝑚𝑚) 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢+𝑣𝑣𝑣𝑣)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 gives

the sky brightness distribution. This however requires measuring
𝒱𝒱 𝑢𝑢, 𝑣𝑣 everywhere in the (u,v) plane. Not possible!

• In reality, we aim to sample 𝒱𝒱 𝑢𝑢, 𝑣𝑣 sufficiently well in order to 
constrain 𝐼𝐼(𝑙𝑙,𝑚𝑚). What is suffiently well? Well, that is a 
complicated question… In any case “(u,v) coverage” is one of the 
main decisive factors between a high quality image and rubbish. 

• To do well, we want:
• Many telescopes, since the number of instantaneous (u,v) samples is 

N(N-1), where N is the number of telescopes
• Long synthesis time for changing baseline projections as Earth 

rotates. However, be careful if the source is variable!
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Examples of (u,v) plane sampling
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VLA
Visibility sampling for a VLA 
snapshot



Examples of (u,v) plane sampling
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What does (u,v) coverage mean to 
your image?

• Outer boundary limits the 
angular resolution

• Inner boundary limits the 
sensitivity to large-scale 
emission structure

• Imperfect sampling in-between 
limits the image fidelity – there 
is information missing!
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Formal description of a discrete 
sampling of the (u,v) plane
Visibility plane is sampled at discrete points given by sampling function: 

𝐒𝐒 𝒖𝒖,𝒗𝒗 = �
𝒌𝒌

𝜹𝜹(𝒖𝒖 − 𝒖𝒖𝒌𝒌)𝜹𝜹(𝒗𝒗 − 𝒗𝒗𝒌𝒌)

If we take an inverse FT of the sampled visibility function, we get a “dirty” 
image:

𝑰𝑰𝑫𝑫 𝒍𝒍,𝒎𝒎 = ℱ−𝟏𝟏(𝑺𝑺 𝒖𝒖,𝒗𝒗 𝓥𝓥 𝒖𝒖,𝒗𝒗 )
Convolution theorem says:

𝑰𝑰𝑫𝑫 𝒍𝒍,𝒎𝒎 = 𝒃𝒃(𝒍𝒍,𝒎𝒎) ∗ 𝑰𝑰 𝒍𝒍,𝒎𝒎
So, 𝑰𝑰𝑫𝑫 𝒍𝒍,𝒎𝒎 is a convolution of the true sky brightness distribution and the 
interferometer beam: 

𝒃𝒃 𝒍𝒍,𝒎𝒎 = ℱ−𝟏𝟏(𝑺𝑺 𝒖𝒖,𝒗𝒗 )
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Interferometer beam
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ℱ
⇋

(u,v) plane sampling Interferometer beam



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

2 stations
25 min

Dirty image 



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

4 stations
25 min

Dirty image 



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

6 stations
25 min

Dirty image 



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

8 stations
25 min

Dirty image 



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

10 stations
25 min

Dirty image 



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

10 stations
5 hours

Dirty image 



Example: Beam shape with increasing
number of (u,v) samples
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(u,v) coverage

10 stations
11 hours

Dirty image 



Dirty image
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interferometer beam dirty imagesource structure



Solving the inverse 
problem
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Going beyond the dirty image

• Because of imperfect (u,v) plane sampling, imaging interferometric 
data is an ill-posed inverse problem. 

• Can we deconvolve 𝐼𝐼𝐷𝐷 𝑙𝑙,𝑚𝑚 = 𝑏𝑏 𝑙𝑙,𝑚𝑚 ∗ 𝐼𝐼 𝑙𝑙,𝑚𝑚 to obtain 𝐼𝐼 𝑙𝑙,𝑚𝑚 ?  
Unfortunately, standard linear deconvolution does not work, since the 
sampling function has zeroes and thus cannot be divided out. 

• Reconstructing images requires information, assumptions or 
constraints beyond the interferometric measurements. Luckily, usually 
quite simple assumptions suffice, e.g., 1) finite source size, 2) positivity, 
3) smoothness and/or 4) sparseness of the true brightness distribution. 

• Two approaches: 1) Inverse modeling by non-linear deconvolution 
algorithms (CLEAN), 2) forward modeling either by regularized 
maximum likelihood algorithms or by a full Bayesian approach. 
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Non-linear deconvolution with a CLEAN 
algorithm
CLEAN is the most widely used algorithm (implementations in 
CASA, AIPS, Difmap …)
• Fits and subtracts the interferometer beam iteratively
• Original version by Högbom (1974), several improvements later
• Assumes that source structure can be presented as a sum of a finite 

number of point sources
• User can supply a priori information by restricting the area where CLEAN 

is allowed to work (“CLEAN windows”)
• Has problems with diffuse emission (creates “spotty” structures)
• Instabilities: striping around extended sources is a common artefact
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Deconvolution with CLEAN algorithm
Basic algorithm:
Initialize: residual map = dirty map and list of δ-
components = empty
1. Find the peak in the residual map, identify it 

as a point source
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Deconvolution with CLEAN algorithm
Basic algorithm:
Initialize: residual map = dirty map and list of δ-
components = empty
1. Find the peak in the residual map, identify it 

as a point source
2. Subtract this point source, scaled by 

loop_gain and convolved with the 
interferometer beam, from the residual 
image
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Deconvolution with CLEAN algorithm
Basic algorithm:
Initialize: residual map = dirty map and list of δ-
components = empty
1. Find the peak in the residual map, identify it 

as a point source
2. Subtract this point source, scaled by 

loop_gain and convolved with the 
interferometer beam, from the residual 
image

3. Save the position and subtracted flux to the 
list of δ-components
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Deconvolution with CLEAN algorithm
Basic algorithm:
Initialize: residual map = dirty map and list of δ-
components = empty
1. Find the peak in the residual map, identify it 

as a point source
2. Subtract this point source, scaled by 

loop_gain and convolved with the 
interferometer beam, from the residual 
image

3. Save the position and subtracted flux to the 
list of δ-components

4. If stopping criteria are not met, go to step 1
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Deconvolution with CLEAN algorithm

• Stopping criteria? Target noise level reached, target SNR reached, or  
some maximum number of iterations reached.

• Final step – make “restored” image: 
• Make a model image from the final list of δ-components 
• Convolve the model image with a “CLEAN beam”, which is typically 

a Gaussian fitted to the central peak of the interferometer beam
• Add the last residual map to show possible imaging artefacts

• The resulting image is an estimate of 𝐼𝐼 𝑙𝑙,𝑚𝑚 . 
• The units are typically Jy / clean_beam_area.
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CLEAN example 
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CLEAN iterations 
= 0

Residual image CLEAN image (log)Dirty image



CLEAN example 
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CLEAN iterations 
= 100

Residual image CLEAN image (log)Dirty image



CLEAN example 
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CLEAN iterations 
= 500

Residual image CLEAN image (log)Dirty image



CLEAN example 
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CLEAN iterations 
= 1500

Residual image CLEAN image (log)Dirty image



A note about practical Fourier 
transformation
• Fast Fourier Transform (FFT) is 

typically used to invert the data, 
since it is much faster than direct 
FT (𝒪𝒪(𝑁𝑁2 log2 𝑁𝑁) vs. 𝒪𝒪(𝑁𝑁4) ) for 
an image of 𝑁𝑁 × 𝑁𝑁 pixels and 
~𝑁𝑁2data points

• FFT requires data points on a 
rectangular grid  𝒱𝒱(u,v) needs to 
be interpolated and resampled for 
FFT
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Weighting of the visibility data
Modify the sampling function by a 
weighting function W(u,v)
• S(u,v) W(u,v)S(u,v)
• Modifies the interferometer beam
Natural weighting
• 𝑊𝑊 𝑢𝑢, 𝑣𝑣 = 1/𝜎𝜎𝑢𝑢,𝑣𝑣

2 in occupied cells, 
0 elsewhere

• Maximizes point source sensitivity
• Typically weights more the short 

baselines  loses in angular 
resolution
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Weighting of the visibility data
Uniform weighting
• 𝑊𝑊 𝑢𝑢, 𝑣𝑣 = 1/𝜌𝜌(𝑢𝑢, 𝑣𝑣) where 𝜌𝜌(𝑢𝑢, 𝑣𝑣) is 

the local density of visibilities in the 
(u,v) plane. Depends on selected 
“box size”.

• Weights more the long baselines, 
enhancing angular resolution

• Degrades point source sensitivity
• Be careful, if sampling is sparse
Other weighting schemes
• Briggs’ robust weighting
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Forward modeling
Regularized maximum likelihood (RML) methods
• Represent the image as an array of pixels and Fourier-transform this 

array to evaluate consistency with the data
• Find the image I that minimizes an objective function

𝐽𝐽 𝐼𝐼 = �
data terms

𝛼𝛼𝐷𝐷𝜒𝜒𝐷𝐷2 𝐼𝐼 − �
regularizers

𝛽𝛽𝑅𝑅𝑆𝑆𝑅𝑅(𝐼𝐼)

where 𝜒𝜒𝐷𝐷2 is a goodness-of-fit function, 𝑆𝑆𝑅𝑅(𝐼𝐼) is a regularization term, 
and 𝛼𝛼𝐷𝐷 and 𝛽𝛽𝑅𝑅 are hyperparameters.

• Typical regularizers: image entropy, smoothness, image sparsity etc.
• No final restoring beam is required  
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Example: EHT image of the black hole
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CLEAN

RML

RML

Event Horizon Telescope Collaboration (2019)



Image quality and 
error recognition
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Is my image ok?

The final image depends on…
• Imaging parameters (image and pixel size, visibility weighting, gridding)
• Imaging method (used algorithm and its parameters)
• Any errors in calibration and/or editing of the visibilities, i.e. existence of bad data
• Noise
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Yes!
Go to do 
science.

No!
Find the cause and 
redo some of the 
calibration / 
imaging steps.



How can I tell? 
I. Identifying bad data in the (u,v) plane

Look at data in the (u,v) plane first:
• Easier to identify outliers in (u,v) plane 

– their effect is spread throughout 
image plane

• Plot visibilities vs. baseline length or 
time – variations should be smooth

• Fraction f of slightly bad data gives 
errors at the level of f in the image –
look for gross outliers

• Plot weights – look for large discrepant 
values

• Beware of RFI – check spectral plots
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One antenna has amplitudes down by 50%. 
Increases image noise by a factor of 100!  



How can I tell? 
II. Imaging artefacts

Persistent errors sometimes easier to 
find in the image plane:
• For example, a 5% antenna gain calibration 

error is difficult to see in the data, but 
causes artefacts in the image at 1% level

• Look for unnatural structures in the image:
• Stripes or rings around bright features
• Negative bowls around extended structure
• Spotty on-source structure or short-

wavelength ripples
• Features resembling the interferometer 

beam
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How can I tell? 
II. Imaging artefacts
Persistent errors sometimes easier to 
find in the image plane:
• Are these artefacts additive (constant 

over the field) or multiplicative (brighter 
around bright sources)?

• Are they symmetric or antisymmetric 
around bright sources?
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How can I tell? 
III. Noise in the image
• Calculate the expected thermal 

noise level in the final image from 
the sensitivity of your interferometer 
and integration time

• Measure off-source rms noise by 
e.g., making a histogram of pixel 
fluxes and fitting a Gaussian. Is the 
distribution Gaussian?

• Compare expected and measured 
rms noise. If you do not reach the 
thermal noise level, find out why.
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Flux distribution of the image from the 
previous slide. The expected rms noise was 
0.0001 Jy/beam!



Identifying bad data in the image plane
- short burst of bad data at all antennas

No errors (rms 0.11 mJy/beam) 10% amplitude error for all antennas at 
one time (rms 2.0 mJy/beam)
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Results for a point source using VLA. 13 x 5min observation over 10 hr. Images 
shown after editing, calibration and deconvolution.

VLA 
beam 
pattern

Image credit: 
Greg Taylor



Identifying bad data in the image plane
- short burst of bad data at one antenna
10 deg phase error for one antenna 
at one time (rms 0.49 mJy/beam)

20% amplitude error for one antenna at 
one time (rms 0.56 mJy/beam)
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anti-symmetric 
ridges

symmetric ridges
Image credit: 
Greg Taylor



Identifying bad data in the image plane
- persistent bad data
10 deg phase error for one antenna  
all times (rms 2.0 mJy/beam)

20% amp error for one antenna all 
times (rms 2.3 mJy/beam)
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rings – odd 
symmetry

rings – even symmetry
Image credit: 
Greg Taylor



Other causes of problems:
I. Missing short spacings

• If short (u,v) spacings are 
missing from the data, 
there is no information 
about structures larger 
than ~ �𝜆𝜆 2𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

• Negative bowl around an 
extended source is often a 
sign of unmeasured 
power at short (u,v) 
spacings
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Other causes of problems:
II. Deconvolution errors

• Wrongly selected CLEAN 
windows

• Too shallow or too deep CLEAN
• Poor choice of weighting
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Image credit: Robert Laing

Effect of CLEAN windows

Select tight enough CLEAN boxes to avoid 
CLEANing noise interacting with sidelobes.



A proof that all this actually works… 
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Aperture synthesis image of the Galactic Center made by MeerKAT array



Summary

• Interferometer samples Fourier components of the sky brightness 
distribution

• Inverse Fourier transform of the measured visibilities gives an image
• Due to incomplete sampling of the visibility function, imaging is an ill-

posed inverse problem, which can be solved either by inverse 
modeling (non-linear deconvolution) or by forward modeling (e.g., 
RML or Bayesian methods). 

• There are an infinite number of brightness distributions that can fit the 
observed visibilities. Astronomers must be cautious and exercise 
judgement while imaging interferometric data!

• Still, most of the time things do converge! 
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Extra slides
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(u,v,w) coordinate system

• (u,v,w) coordinates (measured in 
wavelengths) are used to describe
antenna positions and baselines

• w points to and follows the source
(or phase tracking center), u is 
towards East, v towards North 
celestial pole

• Projected baseline length: 𝑢𝑢2 + 𝑣𝑣2

• (l,m,n) are direction cosines
describing direction vector s

Interferometric imaging lecture 9.5.2022
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Some properties of Fourier transforms

Fourier transform:

𝑭𝑭(𝒖𝒖) = ℱ 𝒇𝒇(𝒙𝒙) ≡ �
−∞

∞
𝒇𝒇(𝒙𝒙)𝒆𝒆−𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒅𝒅𝒅𝒅

Inverse Fourier transform:

𝒇𝒇(𝒙𝒙) = ℱ−𝟏𝟏 𝑭𝑭 𝒖𝒖 ≡ �
−∞

∞
𝑭𝑭(𝒖𝒖)𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒅𝒅𝒖𝒖

Linearity:
ℱ 𝒇𝒇 + 𝒈𝒈 = ℱ 𝒇𝒇 + ℱ(𝒈𝒈)

Shifting:
ℱ(𝒇𝒇 𝒙𝒙 − 𝒙𝒙𝟎𝟎 ) = 𝑭𝑭(𝒖𝒖)𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒖𝒖𝒖𝒖𝟎𝟎

Scaling:

ℱ 𝒇𝒇 𝒂𝒂𝒂𝒂 =
𝟏𝟏
𝒂𝒂
𝑭𝑭

𝒖𝒖
𝒂𝒂

Convolution:

𝒇𝒇 𝒙𝒙 ∗ 𝒈𝒈 𝒙𝒙 ≡ �
−∞

∞
𝒇𝒇 𝒙𝒙′ 𝒈𝒈 𝒙𝒙′ − 𝒙𝒙 𝒅𝒅𝒅𝒅𝒅

ℱ 𝒇𝒇 ∗ 𝒈𝒈 = ℱ(𝒇𝒇)ℱ(𝒈𝒈)
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Effect of the antenna reception pattern

The antenna reception pattern 
A(l,m) is not uniform
• One needs to correct for the 

direction-dependent sensitivity
• Luckily, it is usually simple: 

dividing I(l,m) by A(l,m) in the 
image plane is enough 
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Reading (and watching) material
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• Condon, J. & Ransom, S.: “Essential Radio Astronomy” (see 
Chapter 3)

• https://science.nrao.edu/opportunities/courses/era

• Thompson, A.R., Moran, J.M. & Swenson, G.W.: “Interferometry 
and Synthesis in Radio Astronomy” (3rd edition 2017)

• Open access: http://www.springer.com/in/book/9783319444291

• Taylor, G. B., Carilli, C. L. & Perley, R. A.: “Synthesis Imaging in 
Radio Astronomy II” ASP Conference Series Vol. 180 (1999)

• Contents available online

• NRAO Synthesis imaging school 2014 lecture videos are online
• https://science.nrao.edu/science/meetings/2014/14th-synthesis-imaging-

workshop
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