Astronomical spectroscopy Seppo Mattila

Wavelength (Å)

UBVR and zJK (infrared) images of the Orion (H II region) Nebula from the ESO 2.2m and VISTA telescopes

dust

5 OB stars with T_{eff} ~20 000 - 30 000K L ~ 50 000 - 150 000 L

UBVR and zJK (infrared) images of the Orion (H II region) Nebula from the ESO 2.2m and VISTA telescopes

dust

5 OB stars with $T_{eff} \sim 20\ 000 - 30\ 000K$ $L \sim 50\ 000 - 150\ 000 L$

Sanchez et al. (2007)

Wavelength	Wavelength	Flux ¹	Line Id.	Wavelength	Wavelength	Flux	Line Id.
Lab. (Å)	Obs. (Å)			Lab. (Å)	Obs. (Å)		
3726.03*	3724.94	35219.70	[OII]	5006.84*	5006.99	143002.31	[OIII]
3728.82*	3730.08	40670.09	[OII]	5056.02	5055.80	35.09	SiII
3750.15	3751.09	676.63	H12	5056.35	5056.35	39.79	SiII
3770.63	3771.25	1574.32	H11	5158.81	5157.92	52.29	[FeII]
3797.90	3798.18	2550.31	H10	5197.90	5195.79	25.86	[NI]
3819.64	3819.54	876.94	HeI3819	5199.00	5199.49	76.77	SKY_NI
3835.39	3835.15	3391.71	H9	5200.26	5201.02	142.51	[NI]
3857.53	3853.55	561.27	HeI	5270.40	5270.64	171.06	[FeIII]
3868.75	3868.59	8266.59	[NeIII]	5360.00	5359.94	6.06	SKY?
3888.65	3887.97	4416.27	HeI	5461.00	5461.07	215.29	SKY_HgI
3889.05	3890.22	3957.53	H8	5517.71	5517.71	284.96	[CIIII]
3964.73	3967.69	3634.16	HeI	5537.88	5537.89	281.24	[CIIII]
3967.46	3968.09	642.14	[NeIII]	5577.00	5576.40	789.97	SKY_OI
3970.07	3969.20	5478.41	$H\epsilon$	5577.31	5578.10	791.73	[OI]
4009.27	4007.41	318.24	HeI	5685.00	5684.97	118.17	SKY_NaI
4026.21	4026.00	722.02	HeI	5754.64*	5754.66	400.01	[NII]
4046.00	4046.02	32.09	SKY_HgI	5770.00	5769.91	15.66	SKY?
4068.60	4068.39	458.02	[SII]	5790.00	5790.04	1.16	SKY?
4076.35	4074.88	159.72	[SII]	5875.62	5875.56	7538.90	HeI
4101.74	4101.56	12021.26	$H\delta$	5893.00	5892.61	348.91	SKY_NaI D
4120.86	4121.23	53.23	HeI	5930.00	5927.95	123.02	SKY?
4143.76	4148.23	23.02	HeI	5957.61	5957.11	41.97	SiII
4267.15	4265.12	85.48	CII	5958.58	5957.49	12.78	OI
4340.47	4340.32	23860.65	$H\gamma$	5978.97	5978.80	81.35	SiII
4358.00	4364.15	113.00	SKY_HgI	6000.00	6000.26	12.91	SKY?
4363.21*	4366.76	831.27	[OIII]	6046.40	6046.57	41.92	OI
4387.93	4379.43	125.13	HeI	6240.00	6239.95	60.97	SKY?
4414.91	4471.37	1937.47	OII	6265.00	6264.91	30.67	SKY?
4416.98	4418.47	62.93	OII	6300.00	6299.33	297.01	SKY_OI
4471.50	4412.41	97.99	HeI	6300.30	6301.39	362.98	[OI]
4658.10	4658.22	379.59	[FeIII]	6312.10	6312.27	950.13	[SIII]
4701.62	4701.26	123.43	[FeIII]	6330.00	6329.99	46.28	SKY?
4713.20	4713.36	279.38	HeI	6347.09	6347.30	141.11	SiII
4733.93	4735.80	40.15	[FeIII]	6363.78	6363.72	208.24	[OI]
4754.83	4755.52	62.28	[FeIII]	6370.36	6370.53	107.90	SiII
4769.60	4775.10	62.48	[FeIII]	6548.03*	6547.63	10743.11	[NII]
4777.88	4783.04	29.99	[FeIII]	6562.82*	6562.87	171573.70	$H\alpha$
4815.55	4815.82	82.38	[FeII]	6583.41*	6583.52	32494.66	[NII]
4861.33*	4861.41	50768.69	Hβ	6678.15*	6678.37	1907.79	HeI6678
4921.93	4922.20	201.94	HeI	6716.39	6716.47*	2354.08	[SII]
4958.91*	4959.02	47337.07	[OIII]	6730.85*	6731.27	3447.13	[SII]

Sanchez et al. (2007)

 1 10⁻¹¹ Erg cm⁻² s⁻¹

 $1 \text{ Å} = 10^{-10} \text{ m}$

Introduction

"A spectrum is worth a thousand images"

- Spectroscopy probably the most important method for learning about the physics of astrophysical objects:
 - Densities, temperature, elemental abundances, motions, magnetic fields, geometry of the emitting region ...
- To interpret a spectrum one needs considerable knowledge of atomic and molecular physics (available from quantum mechanics and lab. studies):
 - The energy levels, intrinsic line strengths and rest wavelengths of the transitions for each atom, ion or molecule, ionisation energies etc.

- Determine the flux density as a function of wavelength (spectral energy distribution, spectral lines, physical conditions, velocities etc.)
- Use a mask with a narrow aperture (slit) to cut the 2D image to 1D
- Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum
- Spectrographs use an imaging device (CCD) to record the dispersed light

- Determine the flux density as a function of wavelength (spectral energy distribution, spectral lines, physical conditions, velocities etc.)
- Use a mask with a narrow aperture (slit) to cut the 2D image to 1D
- Use a diffraction grating (or a grism) to disperse the incident light beam into spectrum
- Spectrographs use an imaging device (CCD) to record the dispersed light

- Resolving power of a spectrograph $R = \lambda / \Delta \lambda$
 - Low resolution R = 500, at 650 nm $\Delta\lambda$ = 1.3 nm (600 km/s)
 - Medium resolution R = 5000, at 650 nm $\Delta\lambda$ = 0.13 nm (60 km/s)
 - High resolution R = 50 000, at 650 nm $\Delta\lambda$ = 0.013nm (6 km/s)

- Resolving power of a spectrograph $R = \lambda / \Delta \lambda$
 - Low resolution R = 500, at 650 nm $\Delta\lambda$ = 1.3 nm (600 km/s)
 - Medium resolution R = 5000, at 650 nm $\Delta\lambda$ = 0.13 nm (60 km/s)
 - High resolution R = 50 000, at 650 nm $\Delta\lambda$ = 0.013nm (6 km/s)
- Dispersion of a spectrograph given by the grating equation in nm/mm in the focal plane or in nm/pixel for the CCD detector

THE GRATING EQUATION $d\sin($ $m = 1, 2, 3, \dots$ $m\lambda$ 1st order (spectrum) y Oth order ("mirror"

Spectral lines

- Spectral lines observed in either emission or absorption
- Allowed transitions the 'strongest' (most probable) transitions
 - Satisfy the electric dipole selection rules
 - e.g. recombination lines of hydrogen (H α , H β , H γ , H δ etc.)
- Forbidden transitions 10⁸⁻¹² times 'weaker' than allowed transitions
 - e.g. the forbidden lines [O II], [O III], [N II], [S II]

Astronomical redshift

redshift

$$z = \frac{\Delta \lambda}{\lambda_{rest}} = \frac{\lambda_{obs} - \lambda_{rest}}{\lambda_{rest}} = \frac{v}{c}$$

Hubble's law

 $v = H_0 d$

where $H_0 \sim 70 \ km \ s^{-1}/Mpc$

 $\begin{array}{l} z=0.05 \ corresponds \\ to \sim \! 214 \ Mpc \sim 700 \ Mly \end{array}$

"Spectroscopic observations indicate at least two types of supernovae. Nine objects form an extremely homogeneous group provisionally called type I"
Rudolph Minkowski (1941)

Rudolph Minkowski (1895-197

Supernova types

Supernova types

Pastorello+ 2007

Mouse hovers at WL: 7011.32 (rest),7291.77 (observed)

PESSTO spectroscopic classification of optical transients

ATel #5335; <u>T. Kangas, E. Kankare, S. Mattila (University of Turku),</u> <u>C. Inserra (QUB), M. Fraser (QUB), R. Scalzo (ANU), M. Nicholl</u> <u>(QUB), A. Gal-Yam, O. Yaron (Weizmann), S. Benetti, A. Pastorello,</u> <u>(INAF - Padova), S. Valenti (LCOGT/UCSB), S. Taubenberger (MPA</u> <u>Garching), S. J. Smartt, K. Smith, D. Young (OUB), M. Sullivan (Uni. of Southampton), C. Knapic, M. Molinaro, R. Smareglia (Trieste), C. Baltay, N. Ellman, E. Hadjiyska, R. McKinnon, D. Rabinowitz, E. S. Walker (Yale University), U. Feindt, M. Kowalski (Universitat Bonn), <u>P. Nugent (LBL Berkeley)</u> on 28 Aug 2013; 18:50 UT</u>

Distributed as an Instant Email Notice Supernovae Credential Certification: Seppo Mattila (seppo.mattila@utu.fi)

Subjects: Optical, Supernovae

PESSTO, the Public ESO Spectroscopic Survey for Transient Objects (see Valenti et al., ATel #<u>4037; http://www.pessto.org</u>), reports the following supernova classifications. Targets were supplied by the La Silla-Quest survey (see Hadjiyska et al., ATel #<u>3812</u>) and the OGLE-IV Transient Search (see Wyrzykowski et al., ATeL #<u>4495</u>). All observations were performed on the ESO New Technology Telescope at La Silla on 2013 August 27 (UT), using EFOSC2 and Grism 13 (3985-9315A, 18A resolution). Classifications were done with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) and GELATO (Harutyunyan et al., 2008, A&A, 488, 383). Classification spectra can be obtained from<u>http://www.pessto.org</u> via WISeREP (Yaron & Gal-Yam, 2012, PASP, 124, 668).

Name	RA (J2000)	Dec (J2000)	Disc. Date	Disc. Source	Disc Mag	Z	Туре	Phase	Notes
LSQ13bor LSQ13btf LSQ13bth LSQ13bth	03:25:49.08 01:39:20.89 03:44:10.80	-19:18:10.5 -19:49:29.4 -19:51:12.8	2013-08-11 2013-08-15 2013-08-15 2013-08-15	LSQ LSQ LSQ	19.9 20.5 20.1	~0.11 ~0.19 ~0.09	SN Ia SN Ia SN Ia	<pre>~9d past max ~2d pre max ~7d past max</pre>	(1)
LSQ13bwt LSQ13bxv LSQ13byc	00:39:22.04	-24:05:01.3 -21:38:08.9	2013-08-20	LSQ LSQ LSQ	19.1 19.5	~0.07 ~0.14 ~0.04	IIn SN Ibc	~110 past max 	(2) (3)
LSQ13byn OGLE-2013-SN-051	01:36:41.14	- 17:53:59.1	2013-08-25	OGLE	19.4 18.8	~0.11	SN Ia SN Ia	~7d pre max ~7d past max	l

(1) Best match found with SN 2005hk a couple of days before maximum light.

PESSTO spectroscopic classification of optical transients

ATel #5335; <u>T. Kangas, E. Kankare, S. Mattila (University of Turku),</u> <u>C. Inserra (QUB), M. Fraser (QUB), R. Scalzo (ANU), M. Nicholl</u> (QUB), A. Gal-Yam, O. Yaron (Weizmann), S. Benetti, A. Pastorello, (INAF - Padova), S. Valenti (LCOGT/UCSB), S. Taubenberger (MPA Garching), S. J. Smartt, K. Smith, D. Young (OUB), M. Sullivan (Uni. of Southampton), C. Knapic, M. Molinaro, R. Smareglia (Trieste), C. Baltay, N. Ellman, E. Hadjiyska, R. McKinnon, D. Rabinowitz, E. S. Walker (Yale University), U. Feindt, M. Kowalski (Universitat Bonn), <u>P. Nugent (LBL Berkeley)</u> on 28 Aug 2013; 18:50 UT Distributed as an Instant Email Notice Supernovae

Credential Certification: Seppo Mattila (seppo.mattila@utu.fi)

Subjects: Optical, Supernovae

PESSTO, the Public ESO Spectroscopic Survey for Transient Objects (see Valenti et al., ATel #4037; <u>http://www.pessto.org</u>), reports the following supernova classifications. Targets were supplied by the La Silla-Quest survey (see Hadjiyska et al., ATel #3812) and the OGLE-IV Transient Search (see Wyrzykowski et al., ATeL #4495). All observations were performed on the ESO New Technology Telescope at La Silla on 2013 August 27 (UT), using EFOSC2 and Grism 13 (3985-9315A, 18A resolution). Classifications were done with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) and GELATO (Harutyunyan et al., 2008, A&A, 488, 383). Classification spectra can be obtained from <u>http://www.pessto.org</u> via WISeREP (Yaron & Gal-Yam, 2012, PASP, 124, 668).

Name	RA (J2000)	Dec (J2000)	Disc. Date	Disc. Source	Disc Mag	z	Туре	Phase	Notes
LSQ13bor LSQ13btf LSQ13bth	03:25:49.08 01:39:20.89 03:44:10.80	-19:18:10.5 -19:49:29.4 -19:51:12.8	2013-08-11 2013-08-15 2013-08-15	LSQ LSQ LSQ	19.9 20.5 20.1	~0.11 ~0.19 ~0.09	SN Ia SN Ia SN Ia	<pre>~9d past max ~2d pre max ~7d past max</pre>	(1)
LSQ13bwl	23:33:55.42	+04:31:00.3	2013-08-20	LSQ	18.4	~0.07	SN Ia	/ ~11d past max	ĺ
LSQ13bxv	00:39:22.04	-24:05:01.3	2013-08-21	LSQ	19.1	j~0.14	IIn		(2)
LSQ13byc	04:08:43.69	-21:38:08.9	2013-08-25	LSQ	19.5	~0.04	SN Ibc		(3)
LSQ13byn	01:36:41.14	-17:53:59.1	2013-08-25	LSQ	19.4	j~0.11	SN Ia	∼7d pre max	
0GLE-2013-SN-051	00:32:19.54	-66:25:44.2	2013-08-16	OGLE	18.8	~0.07	SN Ia	<pre>~7d past max</pre>	İ

(1) Best match found with SN 2005hk a couple of days before maximum light.