Modeling for Quantitative Assessment of Regional Myocardial Blood Flow

Hidehiro Iida, PhD in Physics, PhD in Medical Science Turku PET Centre, Finland Modeling, instrumentation, and data analysis in PET, SPECT, and MRI

What is regional myocardial blood flow?

- Blood flow (Velocity flow of "blood")
- **Regional tissue blood flow** (perfusion)

A rate that supplies substrates to regional tissue with a separately defined extraction rate through the capillary membrane

What is regional myocardial blood flow?

Radiotracers for myocardial perfusion in PET and SPECT

¹⁵ O-water	2.04 min (PET) Onsite cyclotron
¹³ N-ammonia	9.96 min (PET) Onsite cyclotron
¹⁸ F-flurpiridaz	109 min (PET) Delivery/cyclotron
⁸² Rb	1.27 min (PET) Generator
⁶² Gu-PTSM	9.74 min (PET) Generator
²⁰¹ Tl	72 hour (SPECT) Delivery
^{99m} Tc-MIBI	6.01 hour(SPECT)Generator/Delivery
(^{99m} Tc-tetrofosmine)	

First-pass extraction fraction $\frac{dC_i(t)}{dt} = \underbrace{E \cdot f \cdot Ca(t) - E \cdot f \cdot C_v(t)}_{v}$ Ideal Capillary 6 ¹⁵O-water Tissue Dbserved flow, E - F, (ml/min/g) 5 201**T** Limited EF at rest 4 ¹³NH; 3 ⁸²Rb 2 99m**Tc** Limited EF during stress 1 0 1 2 3 6 0 4 5 Absolute flow, F, (ml/min/g)

Use of ¹⁵O-Water and PET for quantitative assessment of MBF

- Freely diffusible tracer
- Allows accurate quantitation of tissue perfusion including PVE correction
- Short half-life (2min)
- Allows repeated measurements
- Additional information of water-perfusable tissue fraction

Kinetics of ¹⁵O-Water in regional tissue

Instantaneous equilibrium of water in tissue

Small molecules reaches equilibrium distribution among capillary network

Kinetic model for regional kidney blood flow using ¹⁵O-water and PET

Inaba et al., Tohoku J. Exp med, 1989, 159:283-289

Partial Volume Effect (PVE) in myocardial PET

- PET provides radioactivity concentration in Bq per unit volume element [Bq/mL]
- For objects with small structure having the radioactivity concentration of Bq per unit mass [Bq/g-tissue], PET underestimats the radioactivity concentration:

$$PET\left[\frac{Bq}{mL}\right] = \alpha\left[\frac{g}{mL}\right]$$
 Tissue Concentration $\left[\frac{Bq}{g}\right]$

Compartment model for Myocardial ¹⁵O-water PET

Unique approach to correct for partial volume effect

An example of data analysis for ¹⁵O-Water PET for regional myocardial blood flow

Use of LV TAC and Spillover Correction In Myocardial ¹⁵O-water PET

Unique approach to correct for partial volume effect

$$R(t) = \alpha \cdot C_i(t) + V_a \cdot C_a(t)$$

$$LV(t) = \beta \cdot C_a(t) + \gamma \cdot C_i(t)$$

$$= \beta \cdot C_a(t) + (1 - \beta) \cdot C_i(t)$$

$$\therefore \beta + \gamma = 1$$

$$C_i(t) = \alpha \cdot f \cdot C_a(t) \otimes e^{-(f/p) \cdot t} + V_a \cdot C_a(t)$$

For a given β -value, fitting f, α and V_a to R(t) and LV(t) enables estimation of Ca(t)Important that a correct β value is given, and that $\beta + \gamma = 1$ is a good approximation

JNM 1992; 33:1669-1677

Validation of ¹⁵O-Water PET for quantitation of regional myocardial blood flow

Validation of LV Input Function in O-15 Water PET

From lida et al., J Nucl Med 1998;39:1789-1798

Analysis of dynamic PET Imaging: ¹⁵O-water

Turku PET Centre

Validation of MBF Quantification by Use of O-15 Water ROI Size Dependency of Estimated MBF

lida H, Circulation 78:104-115, 1988

Validation of ¹⁵O-Water PET for quantitation of regional myocardial blood flow

Araujo et al., Circulation 1989

MBF and water-perfusable tissue (PTF) by¹⁵O-water PET in a K9 model of OMI

lida et al J Nucl Med. 41:1737–1745., 2000

Water perfusable tissue fraction in the area of myocardial infarction

 $PTI \equiv PTF/Dev = M^{perfusable} / M^{total}$

lida et al., J Nucl Med 32: 2169-2175; 1991

Functional vs Anatomical PVE Correction Factor

H₂¹⁵O-Derived Tissue Fraction

Anatomically-Derived Tissue Fractio

lida et al., J Nucl Med, 1991

PTI as a Myocardial Viability Marker

PTI = C/B (=PTF/ATF)

Yamamoto et al, Circulation, 1992 De Silva et al, Circulation, 1993

Perfusable Tissue Index as a Potential Marker of Fibrosis in Patients with Idiopathic Dilated Cardiomyopathy

FIGURE 2. PTI for healthy control subjects and DCM patients.

Knaapen P et al., J Nucl Med. 45:1299–1304, 2004

PTI in Pigs with OMI

Teramoto et al., J Nucl Med 2011, 52:761–768

Sham-operated vs myoblast-transplanted myocardium in farm pigs with OMI

Sham operated

mpigh02_96n

Autologous myoblast transplantated

mpigh22_9bp

MBF PTF FDG

Gated bloodpool

Miyagawa S et al., Transplantation, 90: 364-372, 2010

MBF quantitation with¹³NH₃

metabolism-based accumulation

Seconds after I.v. Injection

2-tissue compartment model

Short period scan
Neglegible arterial metabolite

•First-pass EF, partial volume effect, etc need to be corrected

3-tissue compartment model

Metabolic retention taken into account
Requires longer scan
Arterial metabolite not-negligible
First-pass EF, partial volume effect, etc need to be corrected

Kinetics of ¹⁸F-BMS-747158-02 in myocardium

Time / seconds

Nekolla et al., Circulation 2009, 119:2333-2342:

MBF comparison:¹⁸F-BMS-747158-02 vs microsphere In normal and constricted LAD regions in pigs

Reduced MBF in constricted area than microsphere

Nekolla et al., Circulation 2009, 119:2333-2342:

Whole blood radioactivity concentration as Input Function in H₂¹⁵O

Plasma/whole blood ratio ²⁰¹Tl (also in ⁸²Rb?)

Metabolites in arterial blood in ¹³NH₃ PET

Fraction of ¹³NH₃ in blood (%) Arterial concentration (kBq/mL) 100 Fraction of ¹³N-ammonia in arterial blood (%) Total activity Ammonia 0 Measurements Double exponential fit Jrea 80 Glutamine 200 Acidic amino acids Healthy control 60 0 20 40 10 20 000 ଚ õ 0 0 0 15 20 0 5 10 25 10 25 30 5 15 20 Time after tracer injection (min) Time (Minutes)

kBq mL⁻¹ blood

Keiding et al., Metab Brain Dis (2010) 25:49-56

30

Frequent diagnostic errors in cardial PET/CT due to mis-registration of CTAC and emission PET images

CT-AC is often acquired during a breath hold, while PET assesses average over respirator & contractile motion

FIGURE 7. Mechanisms for attenuation artifacts using postdipyridamole scan. Legend is the same as Figure 6.

Gould KL et al., JNM, 2007 Loghin C et al., JNM, 2004

Summary/comments

- 1. Regional myocardial blood flow as a flux of the tracer to/from tissue through the capillary membrane
- 2. Regional myocardial blood flow can be quantitatively assessed using PET and several radio-labeled tracers.
- 3. ¹⁵O-water PET can provide accurate quantitative values and has been considered a gold standard
- Step-by-step specification is encouraged not only for core software, but also for all intermediate processes including GUIs, by means of ISO13485 or equivalent processes
- 5. Mistmatch between CT-AC and PET needs further technological innovation and development