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Learning objectives

After the the lecture the student should know the
basic concepts of

= Data acquisition: line-of-response, coincidence
detection, 2D and 3D, non-tof vs tof differences

= Data representation: list-mode data, sinograms,
michelogram

= Reconstruction workflow: from raw data to
Images, data corrections, practical example

= Analytical and iterative reconstruction
algorithms: FBP, MLEM, OSEM
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Definitions

LOR = Line of response connecting two detectors
TOF = Time of flight

List-mode data, sinogram, michelogram = PET raw data
used for data representation and reconstruction

FBP = Filtered BackProjection, analytical reconstruction
algorithm

MLEM = Maximum Likelihood Expectation Maximum,
iterative reconstruction algorithm

OSEM = Ordered Subset Expectation Maximum, iterative
reconstruction algorithm, a derivate of MLEM
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Further information

Contact people at Turku PET Centre

= PhD Jarmo Teuho (jarmo.teuho@tyks.fi)

* Professor Mika Teras (mika.teras@tyks.fi)
STIR/SIRF

= https://www.ccppetmr.ac.uk/node/1
NiftyRec

= http://niftyrec.scienceontheweb.net/wordpress/
ASIM/SIMSET

= http://depts.washington.edu/simset/html/user quide/user quide inde

= https://depts.washington.edu/asimuw
GATE/GEANT
= http://www.opengatecollaboration.or
Homepage of J.Fessler:
= https://web.eecs.umich.edu/~fessler/
Handbook of Nuclear Medicine Imaging:
= https://www-pub.iaea.orq/MTCD/Publications/PDF/Publ1617web-
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PET Data Acquisition

a Line-of-response

2 Coincidence detection

2 2D vs 3D acquisition

0 Non-TOF system vs TOF system
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Line of Response

O A straight line which connects the centers of two detectors X and Y
is called a line of response (LOR).

0 The two 511 keV photons are detected in coincidence across a LOR,
in the absence of an absorptive collimator.

a This technique is called electronic collimation.

0 All coincident events recorded are collectively called as prompt
events, containing:

= True events

= Random events

» Scattered

= Multicoincidence

= Motivation for data corrections
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Coincidence Detection

0 Creation of two electronic pulses (at detectors X and Y) at the same
time (“in coincidence”) signifies a point of annihilation somewhere in
the LOR connecting the associated detectors X and Y.

o During the scan, coincidence counts are recorded for each LOR and
stored in a raw data format (list-mode or sinogram).

0 The number of coincidence counts obtained on a particular LOR
indicates amount of radioactivity (“counts”) present along that line
during the scan.

o A ||3araIIeI set of LORs through the imaged object f(x,y) can be
collected as a set of projections p(s,$) of the radioactivity
distribution. The collection of all these projections is called a
sinogram.
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From Coincidence to Raw Data

Pulse from
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Gate generator
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Figure5.2. Figure 5.2 Example coincidence circuitry. Each detector generates a pulse when a photon deposits energy in it; this pulse passes to a time pick-off
unit. Timing signals from the pick-off unit are passed to a gate generator which generates a gate of width t. The logic unit generates a signal if there is a
o b voltage on both inputs simultaneously. This signal then passes to the sorting circuitry.

SOA
&ij\g : Modified from : Quantitative Techniques in PET
SN Steven R Meikle and Ramsey D Badawi
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2D Data vs 3D Data Collection

direct Cross
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Measurements Measurements
Figure 4. Comparison of fully 3-D and 2-D PET measurements. In 2-D mode, scanner only collects direct and
- v(_ cross planes (organized into direct planes). In fully 3-D mode, scanner collects all, or most, oblique planes.

&7?‘\9 PET Image Reconstruction
?‘(\,'\S/Q;“ Adam Alessio and Paul Kinahan

The Theory and Practice of 3D PET
Bendriem, B., Townsend, D.W.
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Line-of-Response in
TOF and non-TOF

Real annihilation event

TOF principle
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Fig. 4b. Coincidence processing in time-of-flight (TOF) PET data acquisition.

Non-TOF
PET, the
probability of
detection is
assumed
uniform
across the
LOR
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Conventional PET Time-Of-Flight PET

In TOF PET the

arrival-time
difference of
the two
detected
photons is
measured.
Time
difference is
used to
determine
the most
likely location
(d) of the
annihilation
event.
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Data Representation

a List-mode data
2 Sinogram

a Michelogram

- o ’
< (-
& ( . 3
&R
“ v

’eo

W ME
[

¥

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital



List-mode data

0 In list-mode acquisition, digitized X- and Y- signals are coded with “time
marks” as they are received in sequence.

Q Signals are stored as individual events as they occur.

0 After the acquisition is completed, data can be histogrammed to individual
sinograms.
= QOther terms: data sorting, unlisting, sometimes re-binning

a This way of storing the data allows flexibility, since the data can be sorted
to sinograms as:
= Static (whole scan time e.g. 15 minutes)
= Dynamic (by time to shorter frames e.g. 3x180 s, 5x300 s, etc.)
= Gated (respiratory or cardiac time marks e.g. by respiratory or cardiac phase)

0 Practical hurdles:
= Size and storage requirements (1,5 GB for non-TOF and 4 GB+ for TOF)
“e.. = Increased activity / sensitivity => disk writing speed + memory/storage requirements

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital
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LIST Mode

+ Time ticks are fixed at 1msec intervals
« The number of events between time ticks depends
on the amount of activity in the field of view

» The more activity, the more the events between

time ticks.
« Very flexible, data can be rebinned as static,

dynamic, or gated.
* Requires large amount of memory

Tmsec 1msec

\‘(\l(\
5 https://www.aapm.org/meetings/amos2/pdf/42-11881-66890-783.pdf

0. Mawlawi MDACC]
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Sinogram

It is typical to store and display the raw data in a sinogram.

The imaged object f(x,y) is now collected as a set of
projections p(s,$) of the radioactivity distribution.

In essence, by performing image reconstruction we want to
recover the original imaged object f(x,y) from this set of
projections p(s,9).

The line-integral transform of f(x,y) to p(s,$) is called the X-
ray transform, or the Radon transform in 2D. During image
reconstruction process, this is usually referred as forward
projection rperatlon while backprojection is the adjoint
operation of forward projection (inverse Radon

. transform).

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital
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Sinogram Formation,
Forward Projection

S

|

Integration along
all LORs at fixed ¢

Sinogram

Figure 2. A projection, p(s,©). is formed from integration along all parallel LORs at an angle ¢). The projections are
organized into a sinogram such that each complete projection fills a single row of ¢ in the sinogram. In this format, a
«  singlepointin f(x,y) traces a sinusoid in the sinogram.
és Y PET Image Reconstruction
‘{,‘\;’\ﬂﬁﬁj Adam Alessio and Paul Kinahan
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Backprojection

pls.0)

\ Backprojection along all
LORs at a fixed o.
\ /

‘x of @.
ol b _
&Dj‘\p PET Image Reconstruction
% \,\/‘3;“ Adam Alessio and Paul Kinahan
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Sinogram in 2D Acquisition and
Reconstruction

0 In projection space, the imaging volume is described as p(s,$,z,0)

0 In the 2D case all data are sampled (or assumed to be sampled)
with polar angle 8 = 0°, where projections p(s,9,z) are formed only
for a single transverse slice at a time of the volumetric object

f(x,y,2).

0 The volumetric object f(x,y,z) is recovered by reconstruction of each
2D sinogram p(s,$,z) corresponding to an individual slice z, leading
to an 3D image. Stack of sinograms => individual slices => imaged
3D object.

0 The image reconstruction process starts with collected &
uncorrected raw data (typically sinograms), performs essential data
corrections and tries to recover the cross-sectional images that

... represent radioactivity distribution inside the imaged object.

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital
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Each sinogram

represents the data
acquired for a slice
across all angles

Practical Example
One 2D Sinogram
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Displacement

The sinogram is a
two-dimensional
histogram of the
LORs in distance
and angle
coordinates

After data corrections and
image reconstruction, the
“image is a pixel-by-pixel
representation of the
radiotracer concentration
at scan time.

FIGURE 1. Sinogram formation. Coincidence events in PET scanner are categorized by plotting each LOR as function of its angular
orientation versus its displacement from center of gantry. (A) Center of gantry is noted by cross (X), and locus of interest (e.g., tumor) is noted
by ellipse. Four LORs passing through locus of interest are labeled A, B, C, and D. (B) These 4 LORs are plotted on this sinogram where
angular orientation is on y-axis and displacement from center of gantry is on x-axis. If all possible LORs that pass through this point are
plotted, it maps out half of sine wave turned on its side as shown here. (C) Sinograms of more complicated objects, such as sinogram of brain
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scan shown, are composed of many overlapping sine waves. (D) Reconstructed brain image corresponding to sinogram in (C) is shown.

Data Acquisition in PET Imaging, Frederic H. Fahey

Turku PET Centre
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Sinogram in 3D Acquisition and
Reconstruction

0 In the 3D case, the sinograms p(s,¢,z,0) are extended to measuring
projections at polar angles 6 > 0° (obiique or tilt angles).

0 In 3D data, the acquired LORs are represented in terms of four parameters,
s, ¢, 6 and z, which denote:
¢ the radial distance s
e rotation angle ¢
e oblique or tilting angle 6
¢ shift in the axial direction z

0 A 2D reconstruction algorithm can also be applied to 3D data by rebinning
the data to individual 2D sinograms:
= Single-slice rebinning (SSRB), fourier rebinning (FORE, e.g. FORE-FBP, FORE-OSEM)

0 Naturally, a fully 3D reconstruction algorithm can be applied (iterative or
analytical). There are specific considerations when using analytical
algorithms for 3D data, as some of the projections are truncated.

= The interested reader is referred to e.g.: Image Reconstruction Algorithms in PET,
Michel Defrise, Paul E Kinahan and Christian J Michel

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital
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Michelogram

A graphical representation was introduced by the Belgian scientist
Christian Michel to illustrate the plane definitions used in a large multi-
ring PET system - known as “Michelogram” representations.

A michelogram illustrates how different planes can be combined to
optimize storage space and data-handling requirements.

In 3D-PET sinograms from direct and crossing planes can be merged to
additionally reduce the data volume, effectively resulting in an axial
compression (span). Axial and angular compression is performed by the
scanner hardware during the data acquisition process.

The interested reader is referred to:

. Imagﬁ IIQeconstruction Algorithms in PET, Michel Defrise, Paul E Kinahan and Christian
J Miche

= Data Acquisition in PET Imaging, Frederic H. Fahey
= Data Acquisition and Performance Characterization in PET, Dale L Bailey
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Turku PET C

Michelogram Example
2D PET, span 7
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FIGURE 7. 2D PET with span of 7. (&) Top of figure shows configuration for odd-numbered slices. Not only is direct LOR used but also
2 cross LORs on either side of it. For example, Ring 2 in coincidence with Ring 2, Ring 3 with Ring 1 and Ring 1 with Ring 3. For
even-numbered slices, 2 sets of cross LORs are used {e.g., Ring 2 to Ring 3, Ring 3 to Ring 2, as well as Ring 1to Ring 4, and Ring 4 to Ring
1). Since odd-numbered planes contain 3 LORs and even ones contain 4, this is referred to as span of 7. (B) Michelogram for 16-ring scanner
using span of 7. ({C) Set of sinograms corresponding to Michelogram in (B) that have not been corrected for detector sensitivity or plane

Data Acquisition in PET Imaging, Frederic H. Fahey

University of Tu
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2D

Figure3.8. Michelograms representing the plane combinations for a 48-ring scanner are shown for the 2D case (left) and the 3D case (right). The x and y axes
represent ring numbers on opposing sides of the scanner. Each point on the graph defines a unique plane of response (e.g., all lines-of-response inring 1 in
combination with ring 2).The diagonal lines joining individual dots indicate that the planes of response are combined (added together) thus losing information
about each individual point’s polar acquisition angle. This form of combination of data from different planes represents a “lossy” compression scheme.
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Figure3.7. The graphical Michelogam is shown for three different acquisition modes on a simple eight-ring tomograph. Each point in the graph represents a
plane of response defined between two sets of opposed detectors (a sinogram). In the graph on the left (a simple 2D acquisition with no “inter-planes”), the
first plane defined is ring 0 in coincidence with the opposing detectorsin the samering, 0; ring 1 in coincidence with ring 1; etc, for all rings, resulting in a total
of eight sinograms. In the middle graph, the same planes are acquired with the addition of a set of “inter-planes” formed between the rings with a ring differ-
ence of +1 ring (ring 0 with ring 1, ring 1 with ring 0, etc). These planes are added together to form a single plane, indicated by the line joining them. This
would lead to approximately twice the count rate in this plane compared with the adjacent plane which contains data from one ring only. Physically, this plane
is positioned half way between detector rings 0 and 1. While the data come from adjacent rings they are assumed to be acquired with a polar angle of 0°for the
purposes of reconstruction. This pattern is repeated for the rest of the rings. This results in 15 (i.e., 2N — 1) sinograms. This is a conventional 2D acquisition
mode, resulting in almost twice the number of planes as the previous mode, improving axial sampling, and contributing over 2.5 times as many acquired
ie Mtpy events. In the graph on the right, a fully 3D acquisition is shown with each plane of data being stored separately (64 in total). The 3D mode would require a fully
3D reconstruction or some treatment of the data, such as a rebinning algorithm, to form 2D projections prior to reconstruction (see Ch. 4).

‘1@%‘\: Data Acquisition and Performance Characterization in PET, Dale L Bailey
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Reconstruction Workflow

a From raw data to PET images
a Data corrections

2 Practical example with LM-OSEM
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Uncorrected vs Corrected
Sinogram

In the CFrocess of image reconstruction we want to recover the original
imaged object f(x,y) from a measured sinogram p(s,9).

However, to recover the original radioactivity distribution from the object, a
3et of data corrections need to be performed to the measured projection
ata

In essence, the data corrections are implemented to account for physical
effects and effects which occur due to detector geometry or sensitivity non-
uniformity:

= Attenuation and scatter correction

= Detector geometry correction

» Can also include effects such as resolution recovery (PSF modelling)

It is essential that both the image acquisition process and data corrections
are performed as accurately as possible, since all errors in the data
acquisition process and correction process will propagate to the
reconstructed PET images
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From Raw Data to PET Images

Data
corrections

Turku PET Centre

Sort to sinograms

List mode
data

Split list on bed position/time/gate
Divide list intochronological subsets
Order each subset geometrically

/

Prompt list w ctrl word
(phi, r, za, zb, tof)

Apply decay, deadTime , xtalTime
detNorm correction

Decay, deadTime, detNorm
correction

| Interp to small sing |

| Smooth |

Random
small sina

Atten
img

|
Prompt-delay
small sino

. Prompt
Histogram LOR sino v
Decay, deadTime, detNorm
cormection
; Delay
LOR sina / | Interp to small sino |
i =I Subtract random |
Random

Scatter

555

Subtract scatter

RAMLA w

attenCorr

Emission
) / img ;

Back-interp random & scatter small
sino into LOR, apply atten correction.

Pre-recon listw/o ctrl word
(phi, r, dz, z+bp, tof, g, bg)

Whole body
image

/ /

Scatter
small sino

Final corrected sinogram

Final, quantitative PET image
Wang et al 2006 Systematic and Distributed Time-of-Flight List

Mode PET Reconstruction

University of Turku e Rbo Akademi University e Turku University Hospital




Data Corrections

Power of PET is in quantification, which requires accurate data
corrections (non-TOF or TOF specific) to be implemented

With analytical algorithms such as filtered backprojection (FBP) the data are
pre-corrected before reconstruction

Corrections are incorporated in the reconstruction loop in iterative
algorithms, such as ordered subset expectation maximization (OSEM):
= Detector geometry, normalisation of detector efficiencies, detector dead-time

= Attenuation, scatter, random events
= Resolution recovery (PSF), TOF-specific corrections e.g. for scatter

Calibration from counts to activity units (kBg/ml) and correcting for
radioactive decay are also performed

Post-smoothing (e.g. 3D Gaussian with FHWM in mm) is applied to control
the noise in the images, although some expections apply (e.g. Q.Clear,

- blob-RAMLA)

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital
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Data Corrections In
Image Reconstruction

Pre-2004
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A relaxed List Mode Ordered Subset Expectation
Maximization (LMOSEM) algorithm

Algorithm-specific lambda
i i lf Umufﬁ
km _ pkom-1 atten TOF
L= <(1_/1)+?_ D0 H N1 } (
i jesubset m ﬁfﬁm Z H;GF ‘ff + E}?dd

- Attenuation correction n=0 \ g
where 5. = > T H "

‘ System matrix, TOF-specific

all possible jesubset m
adtime . xtalfime

multi xtaleff . det geom __ decay

et = gyl et seom ppdecer ppecdime
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b Nf\\ (f YORRY )”7 Sensitivity image, TOF-specific correction

Multiplicative correction factors

Additive corrections: scatter, randoms
28

2 5
z ™Y z
).

(

University of Turku » Abo Akademi University e Turku University Hospital

Turku PET Centre



Reconstruction Algorithms

a Analytical vs Iterative
a FBP

o MLEM

a OSEM
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Analytical Reconstruction
Algorithms

0 One way to represent the imaging system is with the following
linear relationship:

= p = Hf +n, where p is the set of projections, H is the known system
model, f is the unknown image, and n is the error in the observations.

0 Analytical reconstruction techniques use the inverse of the discrete
Radon transform to solve this problem, offering a direct
mathematical solution for the image f from measured projection p.

= Advantages: scales linearly with the acquired counts

= Disadvantages: system model H is assumed ideal, poor noise
handling/propagation, streak artifacts

0 Background reading (e.g. Two-dimensional central slice
theorem):

= Image Reconstruction Algorithms in PET, Michel Defrise, Paul E Kinahan
and Christian J Michel

Ky (\ = PET Image Reconstruction, Adam Alessio and Paul Kinahan
>,

Turku PET Centre University of Turku » Abo Akademi University e Turku University Hospital
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a Iterative reconstruction:

Can account for the noise structure in the observations, include a realistic system
model

Potentially more accurate estimate, at the cost of greater computational demands
Non-linear behavior => FBP is preferred in some quantitative measurements
Reduced (or none) streak artifacts

0 Basic components:

\
4

Model for the image (pixels, voxels, blobs)

Model for the system H (characterizing the imaging system) that relates image to data
(probability that an emission from voxel is detected in projection)
Model for the data (statistical relationship between the measurements and expected
value, e.g. a Poisson model) => obijective function
Governing principle that defines the “"best” image (e.g. Maximum Likelihood = ML)
Final component: algorithm that finds the best image estimate (e.g. an image, which
is a solution of a maximization of an objective function => maximizes the Poisson-log
likelihood function)
In general, the algorithms themselves are only discussed/referred

e Two widely used approaches for finding the ML estimate: MLEM and OSEM

e Apply to both 2D and 3D data

Turku PET Centre

University of Turku » Abo Akademi University e Turku University Hospital
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Filtered Backprojection (FBP)

QO Most frequently used analytic reconstruction algorithm is the filtered
backprojection (FBP) algorithm

0 The goal of FBP reconstruction is to compute the the image f(x,y) from
projections p(s,9):

F{p(s.0) }}do

(R

fan=fey= [ FH{ww,)

a In algorithmic form:

1D Fourier transform of p(s,$)

Multiplication with a ramp filter v,

Apply a smoothing function/window W(v,)

Inverse Fourier transform of the filtered projections
Backproject across all angles to image space

0 We will consider a 2D case in the next slides, specific considerations apply
to 3D case => homework ©
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1. for all angles ¢ Reference object
a) 1D Fourier transform into frequency space
px, @) = Py, @)
b) multiplication with ramp filter v,
PF(UIP’ ) = P(Uxﬁ‘-’ q)) er
¢) inverse 1D Fourier transform of filtered projections
into projection space:
Py, @) = pfx, @)
P

2. backprojection f(x, y) = J Pix, @doe

0

Sinogram

30

20

FBP (ramp filter) Backprojection (no ramp filter)

Performing mere backprojection
versus applyinging
backprojection after multiplication
with a ramp filter in Fourier
space.

a B
., .7

C
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1. for all angles ¢ Reference object

a) 1D Fourier transform into frequency space D H

p(x, @) = P(vy, @)
b) multiplication with ramp filter v,

PF(UJCP’ ) = P(UXP‘J q:l) er

¢) inverse 1D Fourier transform of filtered projection

into projection space:
Applying additional filtering windows: FBP (Hann filter) FBP (ramp filter)
Hann, Hamming, Shepp-Logan, etc. /\1
. o ' E
Noise regularization is frequency [ i
selective (cutoff & window) =>
trade-off between resolution and noise.

Pi(uy, @) = p"(x, @)
2. backprojection f(x, y) = J Pix, @doe
%
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Image and , Poisson Likelihood function,

system model S eiionn model for the data
N i A p.” exp(—p,)
J— . . /).{_\ : 7 - l/ // ) L L
po=) Hyf, g L(P=plf)= H ,
/=1 LA A e i=1 P
. / //// o b
Detection process o :
is modeled in the e Search for an image f that makes the
system matrix measured data most likely to occur at
argmax() of Poisson log-likelihood
- - Algorithm
Image at nt"iteration
J \ Measured data
‘/ (emission sinogram)

(n)
]( (n+1) f

H
2H, S, "ZH&;‘J“

\ \ Forward projected

~. Updated image _
System matrix image at nthiteration

>t
b
|
[ J);Z’/)

¢

35

University of Turku » Abo Akademi University e Turku University Hospital

Turku PET Centre



Initial estimate Forward projected estimate

’ ‘ ( Image Domain Projection Domain
7 LA 1) Forward Project
f”” ) j; I to all projections
L J Y H LY
:

Updated image T 2) Compare Forward projected estimate

with measured
4) Update Image projections
(and Weight Based on
~ System Matrix) —_r
‘ HiA j; -
3) Backproject ¢
ratio to all voxels

H Backprojected estimate
i (n)
\ z pICAE T

Updated image

Figure 10. Flow diagram of the maximum likelihood-expectation maximization algorithm.
. . e g 0) « - . . .

Starting with an initial image guess ( f ©) in the upper left, the algorithm iteratively

chooses new image estimates based on the measured projections, p.

NS
X
\6"3
L""o N \'\.'O
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OSEM

Ordered Subsets Expectation Maximization (OSEM) was introduced to reduce
reconstruction time of conventional MLEM.

OSEM uses subsets of the entire dataset for each image update in the form:

(n)
f (n+1) _ f Z
J E i E : (n)
Hlj IES) H:kfk !

i E.S_;,

The backprojection steps sum over only the projections in subset $b of a total of b
subsets, which are non-overlapping.

Therefore, the image is updated during each subiteration and one complete iteration will
have b image updates, allowing faster convergence over MLEM.

When there is only one subset (b = 1), OSEM is the same as MLEM. However, although
OSEM resembles MLEM:

= Itis not guaranteed to converge to ML solution (in practice, convergence is similar to MLEM)
= It has more image variance at the same bias level compared to MLEM
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Slice Number: 35 Slice Number: 40

0.6 0.6
OSEM DSEM
0.4 MLEM | | 0.4 MLEM
0.2
D 1 1 1 1
1] 50 100 150 0 50 100 150
Slice Number: 45 Slice Number: 50
0.6 0.8
OSEM 06 DSEM
0.4 MLEM | | : MLEM
0.4
0.2
0.2
0 0
1] 50 100 150 1] 50 100 150

OSEM: 2 subsets, 4 iterations
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Slice Number: 35 Slice Number: 40
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