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TÄHT7039: Radio astronomy and interferometry Recap from lecture 1 2/ 60

Outline

Recap from lecture 1

Opacity

Black body radiation and the brightness temperature

Nyqvist theorem, power and noise temperature

Emission mechanisms and radio sources
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Recap from lecture 1

The ionospheric plasma attenuates radio radiation below the
plasma frequency

νp
kHz = 8.97

√
Ne

cm−3 . (1)

Total flux density Sν :

Sν =

∫
Ωs

Iν(θ, φ) cos θ dΩ (2)

The unit of Sν is W m−2 Hz−1.

1 Jy = 10−26 W m−2 Hz−1 (3)

1 SFU = 10−22 W m−2 Hz−1 (4)
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Optical depth or opacity τ

When optical depth τν is defined as

τν(s) =

∫ s

s0
κν(s) ds, (5)

and it is further assumed that the medium is isothermal, we get

Iν(s) = Iν(0)e−τν(s) + Bν(T )
(

1 − e−τν(s)
)
, (6)

κν is the absorption measure of the medium. So the medium
decreases the observed intensity but also radiates black body
radiation proportionally. If optical depth is very large, the observed
intensity is totally black body radiation:

Iν = Bν(t). (7)



TÄHT7039: Radio astronomy and interferometry Black body radiation and the brightness temperature 5/ 60

Black body radiation and the brightness temperature

The spectrum of the radiation
of a black body in
thermodynamic equilibrium is
given by the Planck law:

Bν(T ) =
2hν3

c2
1

ehν/kT − 1 ,
(8)

which gives the power per unit
bandwidth ( W

Hz).
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The Stefan-Boltzmann radiation law

When the Planck law is integrated over frequency, we get the total
brightness of black body or Stefan-Boltzmann radiation law:

B(T ) = σT 4, (9)

where
σ =

2π4k4

15c2h3 . (10)

The radiation maximum of Stefan-Boltzmann radiation law is at
the wavelength of

λmax[mm]T [K] = 2.8978. (11)

This is called as the Wien’s displacement law.
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Planck law approximations, Rayleigh-Jeans law

The Planck law can be approximated by simpler expressions at the
frequency extremes.

Rayleigh-Jeans law, hν � kT :

BRJ(ν,T ) =
2ν2

c2 kT =
2kT
λ2 (12)

Widely used in radio astronomy. Holds when ν � 20.84T where ν
is in gigahertz and T in Kelvins.
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Planck law approximations, Wien’s law

Wien’s law, hν � kT :

BW(ν,T ) =
2hν3

c2 e−hν/kT (13)

Holds in visible and ultraviolet, not in radio.
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Brightness temperature
Rayleigh-Jeans law implies that the brightness and the temperature
of the black body that emits this radiation are strictly proportional.
Because of this, the brightness of an extended radio source is
measured using its brightness temperature Tb.

Tb =
λ2

2k Iν (14)

Because
Sν = Iν∆Ω, (15)

the total flux density radiated by a black body is

Sν =
2k
λ2 Tb∆Ω (16)

The concept of brightness temperature is used for convenience also
in cases where the radiation is not caused by a black body. Then it
is the equivalent brightness temperature that corresponds to a
black body in the given temperature.
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Total flux density and brightness temperature

For a Gaussian source with a brightness temperature Tb the total
flux density is

Sν =
2.65 Tb θ2

λ2 , (17)

where Sν is in Jansky, θ in arcminutes, and λ in cm.
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Brightness temperature and opacity

When a source is observed through an absorbing medium, e.g. the
atmosphere, the observed brightness temperature is changed from
the original Tb(0) as a function of the attenuation and the
temperature of the physical medium. The medium absorbs the
radiation but also radiates and increases the observed brightness
temperature.

If the medium is isothermal, the observed brightness temperature
Tb(s) with medium thickness s is

Tb(s) = Tb(0)e−τν(s) + T (1 − e−τν(s)). (18)

If opacity is very small, the absorbation and radiation of the
medium has no effet. However, if it is very large, the observed
brightness temperature is the physical temperature of the medium.
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Nyqvist theorem and noise temperature

Radio astronomy receivers and detectors measure a (very small)
electric power. The relation between electric power and
temperature makes a connection between the received electic
power and source noise temperature and finally to total flux
density.
A resistor, at a temperature of T , produces an electric power of P
(electrons are moving due to the temperature i.e Johnson noise).
This phenomenon is reciprocal, i.e. if electric power is dissipated by
the resistor, its temperature is rising by T :

Pν = kT , (19)

i.e. the total power in unit bandwidth, or the total power

P = kTB, (20)

where k is the Boltzmann constant and B is bandwidth.
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What optical & radio astronomers observe?

Optical (X & γ) astronomers
Count photons
Photon noise is Poisson noise
(shot noise, few photons)

Probability to observe n photons in
time t:

p(n, t) = (N t)ne−N t

n! ,

N t = λ

N = mean photon flux

σRMS(N) =
√

N

Radio (& IR) astronomers
Measure noise power i.e.
noise temperature
Gaussian noise statistics

With large N t ⇒ Gaussian (CLT).
Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 3 / 21
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Radio regime: 0 ∼ 300
GHz or ∞ ∼ 1 mm
Infrared ∼ 1 mm – 700
nm
Visible 700 nm – 400 nm
ν = c/λ
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Credit: NASA/IPAC
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How does the sky look like at radio?

Many of the following images are from J.J. Condon’s lecture held at
NAIC/NRAO School on Single-dish Radio Astronomy 2003.
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Electromagnetic energy spectrum of the universeElectromagnetic energy spectrum of the universe
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Synchrotron (dashSynchrotron (dash--dot curve), freedot curve), free--free (dashes),free (dashes),
and dust (dots) spectra typical of most spiral galaxiesand dust (dots) spectra typical of most spiral galaxies



TÄHT7039: Radio astronomy and interferometry Emission mechanisms and radio sources 19/ 60

408 MHz continuum emission, galactic coordinates408 MHz continuum emission, galactic coordinates
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Synchrotron radiation I

Produced by gyrating electron in magnetic field
Emission directed into a narrow beam in the direction of the electron

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 6 / 21
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Synchrotron radiation II

Subclassified by the energy of the electron
Gyroresonance (cyclotron) (non relativistic)
Gyrosynchrotron (mildly relativistic)
Synchrotron (relativistic)

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 7 / 21
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Synchrotron radiation spectrum (AGN)

Self−absorbed 
region

Optically thin
emission

Radiation
losses

Log frequency

Lo
g 

flu
x

Turnover

ν
5/2 ν

α

ν < νSmax : source optically thick ⇒ electron absorbs a photon
emitted by another electron ⇒ self absorption, α = 2.5.
Turnover: given size, S and νmax we get e.g. magnetic field density,
number density and energy density of the relativistic electrons.
ν > νSmax: optically thin region, α depends on the energy
distribution of emitting electrons.
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TÄHT7039: Radio astronomy and interferometry Emission mechanisms and radio sources 23/ 60

Galactic synchrotron emission (WMAP)Galactic synchrotron emission (WMAP)
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Free-free radiation

Credit Prof. Dale E. Gary NJIT

Also called as bremssthralung
Due to accelerations caused by collisions between electrons and ions
(Coulomb collisions)
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Free-free radiation spectrum

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 10 / 21
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Galactic freeGalactic free--free emission (WMAP)free emission (WMAP)
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Thermal (black body) radiation

Credit Prof. Dale E. Gary NJIT

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 11 / 21
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Galactic thermal dust emission (WMAP)Galactic thermal dust emission (WMAP)
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3K microwave background 3K microwave background 
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Spectral line radiation I

Credit Prof. Dale E. Gary NJIT

Molecular vibrational lines:
Molecules spin and vibrate in quantized modes
Transitions between modes emit or absorb radiation
E.g. diatomic molecule CO

J = 0 to 1 transition at 115 GHz
J = 1 to 2 transition at 230 GHz

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 13 / 21
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1420 MHz HI line emission, galactic coordinates1420 MHz HI line emission, galactic coordinates
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115 GHz CO emission and optical dust absorption, 115 GHz CO emission and optical dust absorption, 
first quadrant of the Galaxyfirst quadrant of the Galaxy
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Extended HI emission tracing the interaction historyExtended HI emission tracing the interaction history
of the M81 groupof the M81 group
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Spectral line radiation II

MASER radiation:
Microwave radiation from an optically pumped hot molecular cloud
Usually very intense and narrowband
H2O: 22.23508 GHz
SiO: 43.12203 and 86.24335 GHz
CH3OH: 6.6685192, 12.178597, 19.9673961, 23.1210242, 25.12487,
44.06943, and 97.98097 GHz

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 14 / 21
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Spectrum of theSpectrum of the
water maserwater maser
around the around the 
massive blackmassive black
hole in hole in 
NGC 4258NGC 4258
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4.85 GHz 4.85 GHz 
sky oversky over
Green BankGreen Bank
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VLA (1 km  DVLA (1 km  D--configuration)configuration)
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CasCas A: A: 
supernova supernova 
remnant remnant 
at 1.4, 5, andat 1.4, 5, and
8 GHz8 GHz
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Crab NebulaCrab Nebula
remnant ofremnant of
1054 AD1054 AD
supernovasupernova
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Crab Crab 
nebulanebula
5 GHz 5 GHz 
imageimage
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Crab Crab 
nebula nebula 
and pulsarand pulsar
at 327 MHzat 327 MHz
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M62 pulsarsM62 pulsars
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Orion Orion 
NebulaNebula
HII regionHII region
8.4 GHz8.4 GHz
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The Galactic dark cloud G11.11The Galactic dark cloud G11.11--0.12 in absorption0.12 in absorption
at 8 microns (left) and emission at 850 microns (right)at 8 microns (left) and emission at 850 microns (right)
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850 micron thermal emission from the Moon,850 micron thermal emission from the Moon,
observed with SCUBA on the JCMTobserved with SCUBA on the JCMT
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Betelgeuse: 45 GHz thermal emission from Betelgeuse: 45 GHz thermal emission from 
the stellar wind of a red the stellar wind of a red supergiantsupergiant starstar
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Starburst galaxy M82 continuum emissionStarburst galaxy M82 continuum emission
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Cygnus ACygnus A
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Cen A, peculiar galaxy with radio lobes (from HST web
site)

Kaj Wiik (kaj.wiik@utu.fi) UFYS2010 Lecture 1 spring 2009 19 / 21
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Quasar (3C 273) and host galaxy Quasar (3C 273) and host galaxy 
with quasar subtractedwith quasar subtracted
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Our view of 3C 273: Maps from 6 frequencies
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Our view of 3C 273: Component spectra
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IsotropyIsotropy
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