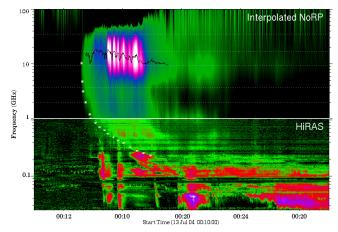
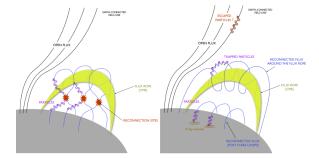

Radio astronomy and interferometry

Silja Pohjolainen

Forth solar lecture 2015


Silja Pohjolainen Radio astronomy and interferometry

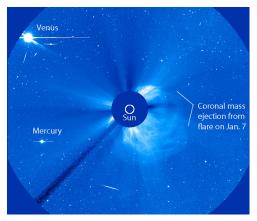
Plasma emission is typically observed at frequencies < 1-2 GHz


Gyroresonance at 2-10 harmonics (depends on B, narrow continuum near 1–5 GHz)

Gyrosynchrotron at 10–100 harmonics (depends on B, wide continuum up to sub-mm waves)

Gyrosynchrotron + plasma emission (from separate sources)

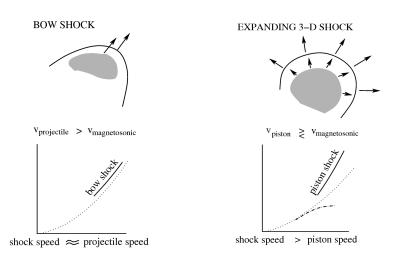
Flare - release of magnetic energy



(ロ) (部) (E) (E)

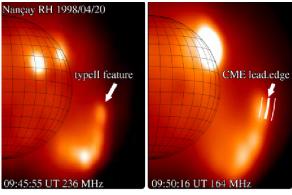
2

Masson, Sophie et al. Astrophys.J. 771 (2013)

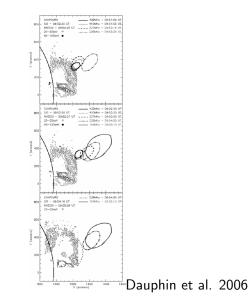

Coronal mass ejection (CME) - ejected mass

(日) (部) (目) (日)

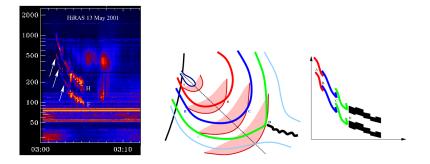
크


Identification of the leading front? Projection effects? Remember also lateral expansion.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

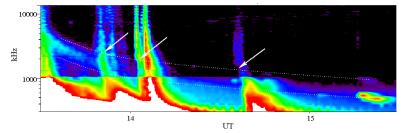

Observations: type II burst driver = CME bow shock

<ロト <四ト <注入 <注下 <注下 <

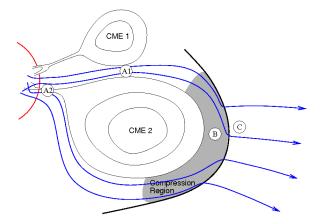


Maia et al. ApJ, 2000

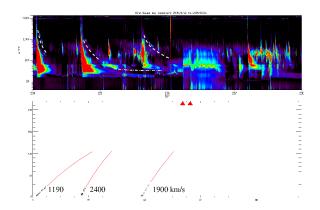
Type II burst driver = rising SXR loop



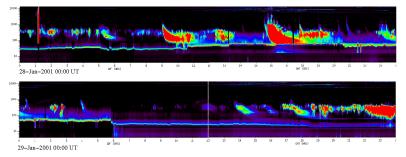
Type II burst source = passage through loops


Observations during Japanese daytime, no radio imaging available Very high frequency start, needed explanation Different loops have different densities and gaps between loops (Pohjolainen, Pomoell & Vainio, 2008)

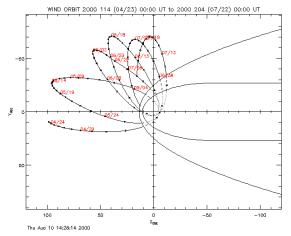
Shocks on the way: tilted type III burst lanes?


Lehtinen et al., 2008: Electron streams meet a propagating shock

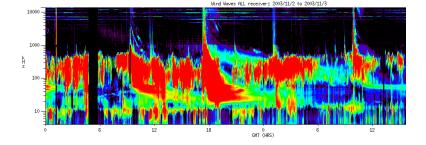
Tilts due to passage through shock fronts


B: compressed high-density region, C: low density and low B

Examples of propagating shocks

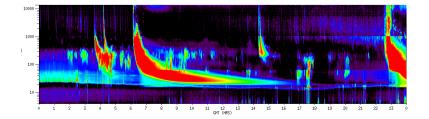

Shock arrival near Earth, fluctuations at local plasma level Plasma frequency near L1 is 30 - 50 kHz

Other radio emission features


AKR - auroral kilometric radiation appears at 80 - 400 kHz, often in 12 hour episodes, mixed with features that have solar origin

・ロト ・ 日 ・ ・ モ ト ・

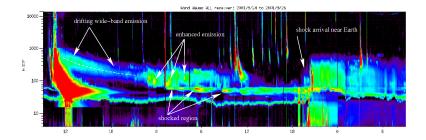
Wind WAVES orbit takes the satellite near Earth where AKR gets stronger


Examples of propagating shocks

Identification of emission lanes may be difficult (type IIIs, AKR...) Note also different intensity scale between receivers (RAD1, RAD2, TNR)

▲ロト ▲御ト ▲画ト ▲画ト 三回 - のへで

Examples of propagating shocks

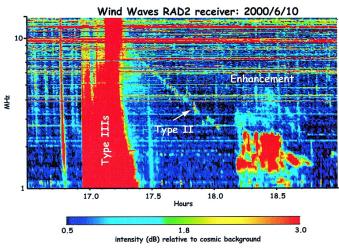

(日)、

Solar activity level affects the dynamic spectra in general

IP type II bursts (space observations) Wind Waves ALL receiver: 2006/7/6 10000 1000 k 100 10 10 -11 17 18 21 22 23 9 12 13 14 GHT (HRS) 15 16 19 20 0 slow CME start 6 UT CME start 17 UT CME start 8:30 UT 200 km/s 330 km/s 910 km/s

Type II bursts can be patchy, 'blips and blobs' that appear infrequently but still form a lane that can be followed

Many radio features during Sun-Earth propagation

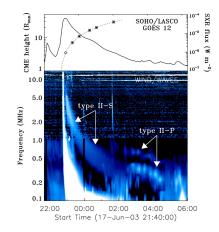


(日) (문) (문) (문)

- 2

A special type of type II burst: wide-band emission

Features from interacting CMEs?

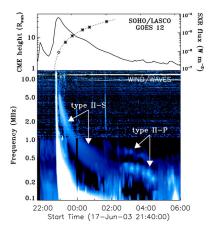


(日) (四) (三) (三) (三)

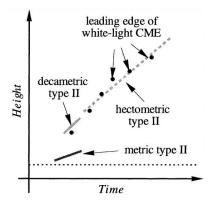
12

Gopalswamy et al. ApJ, 2001

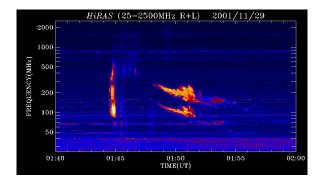
Emission is not always plasma emission


(ロ) (部) (E) (E)

æ


Bastian: plasma vs. synchrotron emission in IP space

- Untypically smooth, diffuse, wide-band type II burst (II-S)
- No harmonic emission (seen in the later II-P burst)
- Height-time track does not match with n_e from plasma emission


From Bastian T., ApJ 665, 2007

- Electron-cyclotron frequency $f_s \approx 2.8 \, \times \, 10^6$ B (Hz)
- Synchrotron emission from power-law electrons with a broad range of pitch angles, broad-band emission centered at: f $\approx f_s \gamma^2 \sin \theta/2$
- Magnetic field varies as $B\approx B_0~(r/R\odot)^{-\beta}$ within the CME (0.5-0.01~G within $3-30~R\odot)$

- Atmospheric density models
 - -> speed from density change
- Scale height + frequency drift
 -> may give different speed
- Corona: second harmonic stronger
- IP space: fundamental stronger
- Emission lanes can be band-split
- May not be plasma emission at all

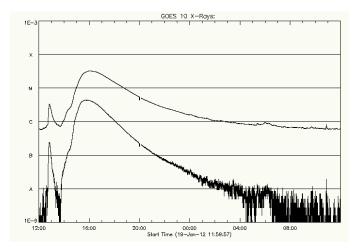
Type II bursts: fundamental (f) and harmonic $(2 \times f)$ bands

<ロ> (四) (四) (四) (四) (四) (四) (四)

ALWAYS MAKE THE MEASUREMENTS USING THE FUNDAMENTAL EMISSION BAND!

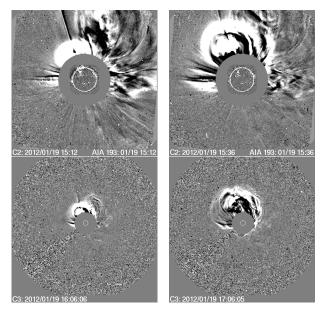
Choosing the density model

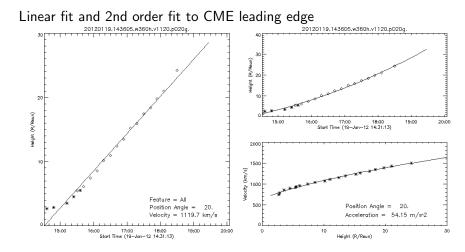
S. Pohjolainen et al.

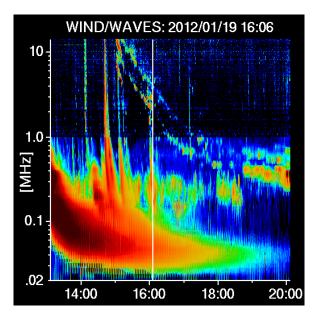

Table 1 Heliocentric burst driver height (R_{\odot}) calculated from plasma frequency using	different atmospheric
density models.	

fp (MHz)	λ (m)	<i>n</i> e (cm ⁻³)	h Saito	h Hybrid	h 2× Newkirk	h 10× Saito	h Leblanc ^a	h IP ^a
400	0.7	$2.0 imes 10^9$	-	-	-	1.08	-	-
300	1.0	1.1×10^9	-	1.04	1.05	1.14	-	_
200	1.5	4.9×10^{8}	-	1.12	1.15	1.26	-	_
100	3.0	1.2×10^8	1.13	1.30	1.37	1.56	-	_
70	4.3	6.0×10^{7}	1.23	1.45	1.51	1.76	-	_
50	6.0	3.1×10^{7}	1.34	1.64	1.68	1.99	1.10	_
30	10.0	1.1×10^7	1.58	2.01	2.04	2.40	1.31	-
14	21.4	2.4×10^{6}	2.07	2.78	2.96	3.33	1.71	-
12	25.0	1.8×10^{6}	2.19	2.96	3.24	3.57	1.80	_
10	30.0	1.2×10^{6}	2.36	3.24	3.74	3.97	1.93	-
9	33.3	1.0×10^{6}	2.44	3.38	4.00	4.17	2.00	-
8	37.5	7.9×10^{5}	2.56	3.57	4.44	4.47	2.09	-
7	42.9	6.0×10^{5}	2.72	3.81	5.05	4.86	2.20	_
6	50.0	4.4×10^{5}	2.90	4.10	6.00	5.38	2.33	_
5	60.0	3.1×10^{5}	3.13	4.46	7.61	6.06	2.49	_
4	75.0	2.0×10^5	3.49	4.96	11.46	7.09	2.72	1.02
3	100.0	1.1×10^5	4.07	5.75	>30	8.88	3.07	1.37
2	150.0	4.9×10^4	5.18	7.07	>	12.17	3.69	2.06
1	300.0	1.2×10^4	8.58	10.36	>	21.30	5.42	4.16

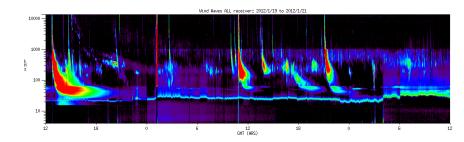
 $a_{n_0} = 4.5 \text{ cm}^{-3} \text{ at } 1 \text{ AU}.$


172


Event to be analysed: January 19, 2012 Event start time approx. 15 UT


◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Coronal mass ejection (CME)



Type II emission = propagating shock waves

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Wind WAVES radio dynamic spectrum 19 Jan 2012 12:00 UT - 21 Jan 2012 12:00 UT

< □ > < □ > < □ > < □ > < □ > < □ >

Looks like three separate shocks, one shock arrival reported at 04:00 UT 21 January

CESRA Summer School 2015

Community of European Solar Radio Astronomers will arrange a summer shool in Glasgow, Scotland, in August 2015. The main topic is **solar radio interferometry**

The school is supported by RadioNet3 EU FP7 project (full or partial funding for travel and accommodation costs)