Relativistic Jets in Astrophysics - Problem set 1 Hand in your solutions by Monday 12.12.2011

1. A formula for apparent transverse speed on the plane sky of a relativistically moving emission region was derived in the lectures:

$$
\begin{equation*}
\beta_{\mathrm{app}}=\frac{\beta \sin \theta}{1-\beta \cos \theta} \tag{1}
\end{equation*}
$$

where $\beta=v / c$ is the true speed of the emission region and θ is the angle between the direction of motion and our line-of-sight. a) Show that for a given β the angle that maximizes $\beta_{\text {app }}$ is $\sin \theta_{\mathrm{c}}=1 / \Gamma$ where $\Gamma=1 / \sqrt{1-\beta^{2}}$. b) Show that this maximum value is $\beta_{\mathrm{app}}^{\max }=\Gamma \beta$. c) You have measured both β_{app} and the relativistic Doppler factor $\delta=\Gamma^{-1}(1-\beta \cos \theta)^{-1}$ of a given jet. Now, calculate Γ and θ of that jet.
2. The Galactic microquasar GRS1915+105 shows a symmetric ejection of two radio emitting blobs with measured proper motions of $\mu_{a}=17.6$ mas/day and $\mu_{r}=9.0$ mas/day for the approaching and receding components, respectively. The source is at a distance of 12 kpc . Calculate the true speed of the blobs and the angle between the jet direction and our line-of-sight. Also calculate the expected ratio between the fluxes of approaching and receding components assuming an optically thin synchrotron spectrum with a power-law index $\alpha=-0.7$.
3. The brightness temperature of a source emitting intensity I_{ν} at frequency ν, is $T_{b}=$ $\frac{c^{2} I_{\nu}}{2 k \nu^{2}}$, where c is the speed of light and k is the Boltzman constant. Using VLBI observations at 15 GHz , we measure the size of the radio emitting "core" at one end of the jet in blazar PKS 0420-014 by fitting a 2D Gaussian brightness distribution to the data and find that FWHM of 0.1 milliarcseconds gives the best fit. The same fit shows that core flux density $F_{\nu}=5.8 \mathrm{Jy}$. The source is at redshift of $z=0.916$. Calculate the brightness temperature of the core in the rest frame of the source's host galaxy. (Hint: Solid angle subtended by a $2 D$ Gaussian $\Omega=\frac{\pi \theta_{F W H M}^{2}}{4 \ln 2}$. And from cosmology $I_{\nu}=I_{\nu}^{\prime} /(1+z)^{3}$.) What can you say about the source based on its T_{B} ? There is a well-known limit to the brightness temperature due to catastrophic cooling by inverse Compton radiation, $T_{B}^{l i m}=10^{12} \mathrm{~K}$. What is the minimum relativistic Doppler factor needed to avoid IC-catastrophe in this source?
4. Blazars are highly variable sources and they show radio outbursts on time scales of months to years. Using the light-travel time argument, one can give an upper limit to the size of the emission region based on observed time scale of variability. From the observed variability time scale τ and peak flux density of the flare $S_{\max }$, derive a formula for the lower limit of the "variability" brightness temperature $T_{B, v a r}$. Assume an optically thin spherical source and take into account cosmological distances (Remember from cosmology that angular distance d_{a} is luminosity distance d_{L} divided by $(1+z)^{2}$). What is $T_{B, v a r}$ if a source at $z=1$ experiences a flare of 10 Jy in 20 days at 37 GHz ? How does
this "variability" brightness temperature transform between the rest frame of the emitting source and the observer's frame in which the source moves relativistically?

