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Exercise 1: Convolution



Convolution 

Vääristyneen kuvan perusmalli

Millä tahansa optisella systeemillä havaittu kuva sisältää aina instrumentin
aiheuttamia vääristymiä ja kohinaa, joten se ei sellaisenaan kerro ”totuutta”.
Matemaattisesti tämä voidaan ilmaista lausekkella

b(~x) = f (~x) ⇤ p(~x) + n(~x) ,

missä b(~x) on havaittu kuva, f (~x) on todellinen kuva, p(~x) on
laitefunktio, n(~x) on kohinatermi ja ⇤ tarkoittaa konvoluutiota. Vektori ~x
on korostamassa sitä seikkaa, että kaikki funktiot riippuvat paikasta
kuvassa. Yksiulotteisessa tapauksessa konvoluutio jatkuville funktioille on

(f ⇤ g)(x) =

Z 1

�1
f (⌧)g(x � ⌧) d⌧

ja diskreeteille funktioille

(f ⇤ g)j =

m/2X

k=�m/2+1

fkgj�k .
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In the case of 1-D functions
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In the case of discrete 1-D functions
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Experiment using different types of convolution kernels for 
1D or 2D data, present your experiment in the report

Exercise 1: practical work





Exercise 2: image matching and subtraction of 
astronomical images to detect variability over time



Point spread function (PSF) 

Ideal (diffraction limited) 
PSF if no atmosphere 

θ ~  1.22 x λ / D 

(where λ is wavelength, 
D the diameter of the 
telescope and θ is in radians) 

Atmospheric turbulence broadens the PSF resulting in a 
Gaussian PSF

CCD-kuvissa olevien tähtien muodot noudattavat yleensä Gaussin profiilia

I (r) = I (0) exp(�r2/2�2)

missä I (0) on keskusintensiteetti ja � mittaa profiilin leveyttä. Tavallisesti
leveyden mittana käytetään puoliarvoleveyttä (full width at half

maximum, FWHM), eli profiilin leveyttä intensiteetin puoliarvokohdassa,
josta käytetään myös nimitystä seeing. Sen yhteys �:aan on FWHM =
2
p

ln 4 � ⇡ 2.35�. Toinen yleisesti käytetty approksimaatio on Moffatin

profiili

I (r) = I (0)
h
1 + (21/� � 1)(r/R)2

i��
,

missä R = FWHM/2 ja � = 2.5 antaa yleensä tähtiin hyvin sopivan
profiilin. Tähtien profiilit ovat harvoin täysin pyörähdyssymmetrisiä johtuen
seeingin vaihteluista, seurannan virheistä ja optisista vääristymistä, joten
yllämainitut funktiot kuvaavat tähden profiilia vain keskimäärin.
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used for WFS and the distance between the reference source and the object
of interest.

In case of  good conditions and a bright,  nearby reference source, the
correction is  good and the resulting point  spread function (PSF) is  very
close to the diRraction limit. 

A good correction in the K-band corresponds to a SR larger than 30%. 

At shorter wavelengths (particularly in the J-band) or in the case of poor
conditions or a faint, distant reference source, the correction is only partial
- the Strehl ratio may only be a few percent.

Figure 3-1: Principle of Adaptive Optics

3.3. Infrared Observations with an AO system

Observing in the IR with an AO system is, in broad terms, very similar to
observing with other IR instruments. One has to deal with high and variable
backgrounds  and  modest  detector  cosmetics.   In  general,  the  IR
background,  particularly  at  longer  wavelengths,  is  higher  for  an  IR
instrument with an AO system, because of the additional optics in an AO
system.  Additionally,  the  classical  chop  and  nod  technique,  which  is
commonly used for the LW Flters in non-AO systems, works less well as the
DM introduces background Quctuations that do not cancel perfectly. This
does  not  degrade  L-band  observations  but  it  may  degrade  M-band
observations.  Given  the  relatively  small  Feld  of  view  of  CONICA,  it  is
possible to observe in the L-band without having to chop and nod. However,
the overheads are relatively large (typically 50-100%) because the sky has

19

VLT/NACO User manual

Adaptive Optics (AO) imaging



FWHM = 1” natural seeing FWHM = 0.1” (AO corrected)



328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the
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Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287
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Optimal Image Subtraction 



328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

328 ALARD & LUPTON Vol. 503

FIG. 1.ÈExample of subtracted image. The two bottom Ðgures of the panel are the original images. On the right is the reference image, and on the left is
the image to be Ðtted by kernel convolution. The two upper Ðgures show the best kernel solution on the right, and the subtracted image on the left. Note the
complicated shape of the kernel.

Figures and we give an illustration of the result we have3 4
obtained.

5. COMPUTING TIME

One might think that a method that Ðts all the pixels in
an image (even if the Ðt is linear) would be much more time
consuming than conventional methods. But the actual cost
of the calculations is much lighter than might appear at Ðrst
glance. Most of the computing time is taken by the calcu-
lation of the matrix we deÐne in an N2 process (where° 2.3,
N is the number of basis function we used). The rest of the
calculation is an N process. However, the matrix could be
calculated once and then used to Ðt the kernel solution for
all images. One problem with this approach is that we reject
di†erent pixels on each frame (due to new saturated pixels
or variable stars), so consequently the matrix elements
change. But in practice, we Ðnd that we reject no more than
1% percent of the total number of pixels, so that all that we

have to do is to calculate the matrix elements for the reject-
ed pixels and subtract them from the original values. This
process costs very little CPU, and once the original matrix
has been built, the kernel solution can be Ðtted very quickly
even if we use several clipping passes. The rest of the oper-
ation requires about the same computing time. By applying
this method, we can process a 1024 ] 1024 frame in about 1
minute with a 200 MHz PC; this could certainly be
improved further by using better numerical algorithms for
the solution of the linear system.

6. SOURCES OF NOISE IN THE RESIDUAL IMAGE

As discussed above, the variance of the residual image is
approximately equal to the sum of the variances of the input
images. If we created a reference image by coadding a large
number of images with good seeing, we could remove the
contribution of the noise in the reference ; we would, of
course, have to be careful about variability between the

=
=

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Optimal Image Subtraction 



Convolution: Optimal Image Subtraction 

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287



Exercise 2: practical work

Experiment with matching and subtraction of AO images 
from two different dates present your results in the report



Can you spot the supernova? Maybe, image subtraction would help ...



image matching and subtraction of astronomical images



image matching and subtraction of astronomical images



extract relevant information
from the fits headers incl. dates
of the observations, telescope
and instrument used,
wavelength of the observation,
atmospheric conditions?



inspect the images using the ds9 tool: different contrast settings, 
comparison between different images, identifying the subtraction 
residuals with image sources, astronomical coordinates, estimate the 
spatial resolution of the images



experiment what happens if we change the subtraction parameters?



how does the subtracted image look like? what is causing the different 
residuals? any real variability between the two images?



Exercise 3: Deep learning for the automated spectral 
classification of supernovae

https://github.com/daniel-muthukrishna/DASH 
Muthukrishna et al. 2019, ApJ, 885, 18 

https://github.com/daniel-muthukrishna/DASH
https://github.com/daniel-muthukrishna/DASH


Supernova types
No hydrogen Hydrogen lines

 Type I  Type II

Si Si

Ia Ic II-P, II-L, IIb, IIn

He He
Light curve, spectral 
lines

Thermonuclear Core-collapse
White dwarf Wolf Rayet + 

binaries Supergiants
Ib



Supernova types
Early 'photosperic' phase  Late time 'nebular' phase

Pastorello+ 2007



Supernova spectral classification by identifying 
characteristic spectral lines (and elements)



Automatic supernova classification based on a deep 
learning approach

Muthukrishna et al. 2019, ApJ, 885, 18 



Exercise 3: practical work

Experiment with a deep learning based method for 
supernova classification and present your findings in the 
report; discuss the pros and cons of the use of machine 
learning in supernova classification 





select some observed supernova spectra from the WISeREP archive, 
download the spectra, make notes of their types and redshifts 



select some observed supernova spectra from the WISeREP archive, 
download the spectra, make notes of their types and redshifts 



select some observed supernova spectra from the WISeREP archive, 
download the spectra, make notes of their types and redshifts 

is the S/N ok?





make experiments with DASH for the spectra that you downloaded, do 
the spectral types agree with previous classifications, are priors needed?


