Course report

- The minimum length is 9 pages (12 pt font) of text (2 pages based on each of the four practical sessions + 0.5 page introduction + 0.5 page summary) + figures, tables, references
- For reporting the work done in each of the sessions please follow the advice of the teachers
- Keep in mind the learning outcomes (slide 4) when preparing your report
- For writing the report you can use any word processing software that you are familiar with. Please, save the report as PDF
- Deadline for handing-in the reports on 15th August

Learning outcomes

After completing the course the students should be able to:

(1) Describe the principles behind some advanced astronomical imaging techniques and identify suitable topics in astrophysics that can be studies with them;

(2) Understand the physics behind some of the most important medical imaging modalities and describe their value in clinical applications;

(3) Identify and discuss the differences and similarities in the challenges faced when analyzing data in these two different disciplines;

(4) Describe the theoretical basis and suitability of several image/signal processing and analysis methods commonly used in astronomy and medical imaging;

(5) Identify suitable algorithms and apply them to astronomical and/or medical imaging datasets to enhance their scientific and/or clinical value;

(6) Produce a written course report

Exercise 1: Convolution

Convolution

"real" signal
additive noise
$$b(\vec{x}) = f(\vec{x}) * p(\vec{x}) + n(\vec{x})$$
observed signal
PSF

In the case of 1-D functions

$$(f * g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau) d\tau$$

In the case of discrete 1-D functions

$$(f * g)_j = \sum_{k=-m/2+1}^{m/2} f_k g_{j-k}$$

$$(f * g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau) d\tau$$

 $(f * g)_j = \sum_{k=-m/2+1}^{m/2} f_k g_{j-k}$

A Community Python Library for Astronomy

Available Kernels

AiryDisk2DKernel (radius, **kwargs)	2D Airy disk kernel.
Box1DKernel (width, **kwargs)	1D Box filter kernel.
Box2DKernel (width, **kwargs)	2D Box filter kernel.
CustomKernel(array)	Create filter kernel from list or array.
Gaussian1DKernel (stddev, **kwargs)	1D Gaussian filter kernel.
Gaussian2DKernel(x_stddev[, y_stddev, theta])	2D Gaussian filter kernel.
RickerWavelet1DKernel(width, **kwargs)	1D Ricker wavelet filter kernel (sometimes known as a "Mexican Hat" kernel).
RickerWavelet2DKernel(width, **kwargs)	2D Ricker wavelet filter kernel (sometimes known as a "Mexican Hat" kernel).
Model1DKernel (model, **kwargs)	Create kernel from 1D model.
Model2DKernel (model, **kwargs)	Create kernel from 2D model.
Moffat2DKernel (gamma, alpha, **kwargs)	2D Moffat kernel.
Ring2DKernel(radius_in, width, **kwargs)	2D Ring filter kernel.
Tophat2DKernel (radius, **kwargs)	2D Tophat filter kernel.
Trapezoid1DKernel(width[, slope])	1D trapezoid kernel.
TrapezoidDisk2DKernel(radius[, slope])	2D trapezoid kernel.

Gaussian1DKernel 1

class astropy.convolution. Gaussian1DKernel (stddev, **kwargs)

[edit on github][source]

80

Bases: astropy.convolution.Kernel1D

1D Gaussian filter kernel.

The Gaussian filter is a filter with great smoothing properties. It is isotropic and does not produce artifacts.

Factor of oversampling. Default factor = 10. If the factor is too large, evaluation can be very slow.

Gaussian2DKernel

class astropy.	convolution. Gaussian2DKernel (x_stddev, y_stddev=None, theta=0.0,	[source]				
**kwargs) ¶		[edit on github]				
Bases: astropy	y.convolution.Kernel2D					
2D Gaussian filte	er kernel.					
The Gaussian filt	ter is a filter with great smoothing properties. It is isotropic and does not produce arti	facts.				
Parameters:	x_stddev : float					
	Standard deviation of the Gaussian in x before rotating by theta.	80 -				
	y_stddev : float	70 -				
	Standard deviation of the Gaussian in y before rotating by theta.	60 -				
	theta : float					
	Rotation angle in radians. The rotation angle increases counterclockwise.	, 50 -				
	x_size : odd int, optional	40 -				
	Size in x direction of the kernel array. Default = 8 * stddev. \bigcirc					
	y_size : odd int, optional	30 -				
	Size in y direction of the kernel array. Default = 8 * stddev.	20 -				
	mode : str, optional					
	One of the following discretization modes:	10 -				
	Discretize model by taking the value at the center of the bin.	0 -	20	40	60	80
	 'linear_interp' 	Ŭ	20	x [pixels]	00	00
	Discretize model by performing a bilinear interpolation between the valu corners of the bin.	es at the				
	• 'oversample'					
	Discretize model by taking the average on an oversampled grid.					
	'integrate'					

Discretize model by integrating the model over the bin.

Exercise 1: practical work

Experiment using different types of convolution kernels for 1D or 2D data, present your experiment in the report

Gaussian1DKernel

Exercise 2: image matching and subtraction of astronomical images to detect variability over time

Point spread function (PSF)

Ideal (diffraction limited) PSF if no atmosphere $\theta \sim 1.22 \text{ x } \lambda / \text{D}$

(where λ is wavelength, D the diameter of the telescope and θ is in radians)

Atmospheric turbulence broadens the PSF resulting in a Gaussian PSF

$$I(r) = I(0) \exp(-r^2/2\sigma^2)$$

Adaptive Optics (AO) imaging

Figure 3-1: Principle of Adaptive Optics VLT/NACO User manual

FWHM = 1" natural seeing

Convolution of images

"real" signal additive noise $b(\vec{x}) = f(\vec{x}) * p(\vec{x}) + n(\vec{x})$

PSF

observed signal

 $ref(x, y) \otimes kernel(x, y, u, v) = im(x, y)$ Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Optimal Image Subtraction

$$ref(x,y) \otimes kernel(x,y,u,v) = im(x,y) + bg(x,y)$$
$$kernel(x,y,u,v) = \sum_{n} \sum_{d_n^x} \sum_{d_n^y} \sum_{\delta^x} \sum_{\delta^y} [a_n \underbrace{x^{\delta^x} y^{\delta^y}}_{3} \underbrace{e^{-(u^2+v^2)/2\sigma_n^2}}_{1} \underbrace{u^{d_n^x} v^{d_n^y}}_{2}]$$

The convolution kernel consists of a set of Gaussian functions (1) which are modified by polynomials (2) and a model for the spatial variations of the kernel (3) where $0 < d_n^y + d_n^x \leq D_n$, and $0 < \delta^y + \delta^x \leq D^k$.

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Optimal Image Subtraction

 $ref(x, y) \otimes kernel(x, y, u, v) = im(x, y) + bg(x, y)$

 $kernel(x, y, u, v) = \sum_{n} \sum_{d_n^x} \sum_{d_n^y} \sum_{\delta^x} \sum_{\delta^y} \sum_{\delta^y} \left[a_n \underbrace{x^{\delta^x} y^{\delta^y}}_{3} \underbrace{e^{-(u^2 + v^2)/2\sigma_n^2}}_{1} \underbrace{u^{d_n^x} v^{d_n^y}}_{2}\right]$

$$bg(x,y) = \sum_{i} \sum_{j} a_{i} x^{i} y^{j}$$

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Convolution: Optimal Image Subtraction

- n number of Gaussian functions in the kernel
- σ_n sigmas of the Gaussians
- D_n polynomial degrees associated with each of the n gaussians
- D^k degree of the polynomial transform for the spatial variations of the kernel
- \mathbf{D}^{bg} degree of the polynomial used to model the background variations
- N_x number of stamps along x-axis
- N_y number of stamps along y-axis
- S_k width of the convolution kernel
- S_s width of the region used for fitting the background
- N_c minimum number of counts in the middle of a stamp

 N_{min} minimum value of a pixel to be included in the fit

 N_{sat} maximum value of a pixel to be included in the fit

Aland & Lupton 1998: A method for optimal image subtraction, arXiv:astro-ph/9712287

Exercise 2: practical work

Experiment with matching and subtraction of AO images from two different dates present your results in the report

Can you spot the supernova? Maybe, image subtraction would help ...

•••						X SAOImage ds	9				
File Edit	View	Frame Bir	n Zoom Scale	Color Region	WCS Analy	ysis					Help
File Object Value WCS Physical Image Frame 2	X X Zoom	18293b.fi 413	its Y Y Y 00 Angle	0.000						→ X	
file		edit	view	frame	bin	zoom	scale	color	region	wcs	help
new		new rgb	delete	clear	single	e tile	blink	first	previous	next	last
	23		44	66	87	109	131	152	174	195	

image matching and subtraction of astronomical images

not3@course2021: ~/imagesubtraction	• -	
not3@course2021: ~/imagesubtraction 80x7		
<pre>(iraf27) not3@course2021:~\$ mkdir imagesubtraction (iraf27) not3@course2021:~\$ cd imagesubtraction</pre>		
<pre>(iraf27) not3@course2021:~/imagesubtraction\$ cp /home/not3/sub/* .</pre>		
<pre>(iraf27) not3@course2021:~/imagesubtraction\$ ls</pre>		
i18293A.fits i18293B.fits iiconfig.txt		0
(iraf27) not3@course2021:~/imagesubtraction\$ mrj_phot i18293A.fits i1829	93B.fi	ts
-c iiconfig.txt		
not3@course2021: ~/imagesubtraction		
not3@course2021: ~/imagesubtraction 80x56		
Reading Imagel		
name: i18293A.fits		
width: 1562 height: 1562 bitpix: -32 offset_header: 46080		
Name: 1102938.1118 width: 1562 height: 1562 hitpix: 32 offset header: 46080		
offsets: 46080 46080		
ss: 1 1 1562 1562		
ss: 1562 1562 1562		
nsx: 8 nsy: 8		
mesh_size: 25 stam_size: 33		
ng: 3 6		
sg: 0.500000		
sat: 9999999999999999.000000 pix_min: 0.000000 max_stamp 2		
deg_spatial: 2 deg_bg: 1		
SUDS: 1502 1502		
Getting Stamps		
bitpix: -32 4		
width: 1562 height: 1562 1562 1562		
bitpix: -32 4		
width: 1562 height: 1562 1562 1562		
sub_ref: 32.391235 10.000000		
Making defect map		
Looking for Stamps		
ND: 64 Ruilding Zore Order Matrix		
Checking Stamps		
x: 71 y: 125 -1.375231		

image matching and subtraction of astronomical images

8	emacs@cours	e2021	4	• - • ×					SAO	mage ds	9	
File Edit Options Buffers	Tools Text Help				File Edit	View	Frame Bir	Zoom	Scale Colo	r Region	WCS	Analysi
🔒 📄 🔝 🗶 🛛 Save	lundo 🛛 🕌 🕼 🎼	Q			File		i18293A.fi	its				
				0	Object		Final com	bined ima	ge: iras1829	3-3413		
nstamps v 8					Value		26.819	96				
sub x 1					FK5	α	18:32:41.	5649 δ	-34:11:25.6	95		
sub_y 1					Physical	х	214.18	вб у	627.81			
half_mesh_size 12					Image	х	483.18	В6 у	897.81			
half_stamp_size 16					Frame 1	х	0.9629	39	0	0		
saturation 999999	999999999				file e	dit	view f	rame	bin zoo	m sca	ale	color
pix min 0.					zoom in	7	oom out	700m	fit 700	m 1/4	700	m 1/2
min_stamp_center	2				20011111	2	oom out	200111	200	/11 1/4	200	111 1/2
ngauss 3												
deg_gauss1 b												
deg_gauss2 4 deg_gauss3 3				U								
sigma_gauss1 1												
sigma_gauss2 2												
sigma_gauss3 4					-							
automatic no												
					-							
-: iiconfig.txt	All L1 (Text)											
Welcome to <u>GNU Emacs</u> , o	ne component of the	<u>GNU/Linux</u> operating sy	/stem.									
Emacs Tutorial	Learn basic keystr	oke commands		U								
U:%%- *GNU Emacs*	Top L3 (Fundam	ental)										
	10t3@course2021: ~/ima	gesubtraction		×								
 	not3@course2021: ~,	/imagesubtraction 80x10										
(iraf27) not3@course202	1:~/imagesubtracti	on\$ ls										
conv0.fits i18293A.fit	s iiconfig.txt	ktfits										
conv.fits i18293B.fit	s kc_0118293B.fit	S on¢ omacc jiconfig ty	v+ £									
[3] 17936	1. 7 Imagesubilacti	the emacs ficulting. ()										
[1] Done	emacs iicon	fig.txt (wd: ~/sub)										
(wd now: ~/imagesubtrac	tion)											
(iraf27) not3@course202	1:~/imagesubtracti	on\$ ds9 i18293A.fits	i18293B.fits	conv.								
)								
						8	32	80	177	370)	754

extract relevant information from the fits headers incl. dates of the observations, telescope and instrument used, wavelength of the observation, atmospheric conditions?

not3@course2021: ~/imagesubtraction not3@course2021: ~/imagesubtraction 80x53 iraf27) not3@course2021:~/imagesubtraction\$ more i18293A.fits SIMPLE T / Fits standard -32 / Bits per pixel BITPIX VAXTS 2 / Number of axes VAXTS1 1562 / Axis length VAXIS2 1562 / Axis length T / File may contain extensions EXTEND IRAF-TLM= '2022-05-30T15:10:15' / Time of last modification = 'Final combined image: iras18293-3413' DATE '2022-05-30T15:10:15 IRAF-MAX= 0.000000E0 / DATA MAX IRAF-MIN= 0.000000E0 / DATA MIN DRIGIN = 'NOAO-IRAF FITS Image Kernel July 2003' / FITS file originator DATE = '2005-08-03T11:53:46' / Date this file was written EXPTIME = 1 / Total integration time 53262 98191961 MJD start (2004-09-14T23:33:57.854) DATE-0BS= '2004-09-14T23:33:57.8545' Observing date NACO 0016.fit / Original File Name INSTRUME= 'NAOS+CONICA' Instrument used TELESCOP= 'ESO-VLT-U4' ESO Telescope Name 278.170930 18:32:41.0 RA (J2000) pointing DEC -34.19111 -34:11:27.9 DEC (J2000) pointing EQUINOX = 2000. Standard FK5 RADECSYS= 'FK5 / FK5 LST 66541.046 / 18:29:01.046 LST JTC 84812.000 / 23:33:32.000 UTC OBSERVER= 'UNKNOWN ' / Name of observer PI-COI = 'UNKNOWN / Name(s) of proposer(s) ALARM / Active alarm(s), if any. AIRMASS = 1.01400 / Averaged air mass CRVAL1 = 278.17093 / Coordinate at reference pixel in <axis CRVAL2 = -34.19111 / Coordinate at reference pixel in <axis CRPIX1 731.2 / Ref pixel in <axis direction> CRPIX2 = 812.9 / Ref pixel in <axis direction> = -7.527780000000E-6 / Increment in <axis direction> CDELT1 = 7.5277800000000E-6 / Increment in <axis direction> CTYPE1 = 'RA---TAN' / Coordinate system of <axis direction> CTYPE2 = 'DEC--TAN' / Coordinate system of <axis direction> CD1 1 -7.52778E-06 / Translation matrix element 7.52778E-06 CD2 2 / Translation matrix element ARCFILE = 'NAC0.2004-09-14T23:33:57.854.fits' / Archive File Name = '23:33:32.000'/ UT at start / ST at start = '18:29:01.046'IMAGETYP= 'OBJECT ' / Observation type = 'ESO-VLT-DIC.OBS-1.10' / OBS Dictionary HIERARCH ESO OBS DID HIERARCH ESO OBS EXECTIME 3620 / Expected execution time HIERARCH ESO OBS GRP = '0 / linked blocks 200141584 / Observation block ID HIERARCH ESO OBS ID HIERARCH ESO OBS NAME 'TOO I18293-3413Ks' / OB name HIERARCH ESO OBS OBSERVER ' UNKNOWN / Observer Name HIERARCH ESO OBS PI-COI ID 5889 / ESO internal PI-COI ID HIERARCH ESO OBS PI-COI NAME = 'UNKNOWN ' / PI-COI name = '073.D-0406(B)' / ESO program identification HIERARCH ESO OBS PROG ID = 'iras18293-3413' / OB target name HTERARCH ESO ORS TARG NAME

inspect the images using the ds9 tool: different contrast settings, comparison between different images, identifying the subtraction residuals with image sources, astronomical coordinates, estimate the spatial resolution of the images SAOImage ds9

File

							SAOIm	age ds9)				•	- • ×
ile	Edit	View	Frame	Bin	Zoom	Scale	Color	Region	WCS	Analysis	Help			
ile			i18293	λ fits										
biect	-		Final c	ombin	ed ima	ge: ira	18293-	3413						
/alue			- mar e			90.00					ŕ Ý			
VCS											Е 🛹	→x		
hysic	al	х			у									
mage	2	х			у									
rame	1	x	0.72	21172	2		0	0	_					
file	е	dit	view	fra	me	bin	zoom	sca	le	:olor	region	wcs	analysis	help
line	ar	log	p ov	ver	sqrt	: !	squared	asıı	าท	sinh	histogra	m	min max	zscale
		1000000												

experiment what happens if we change the subtraction parameters?

- n number of Gaussian functions in the kernel
- σ_n sigmas of the Gaussians
- D_n polynomial degrees associated with each of the n gaussians
- D^k degree of the polynomial transform for the spatial variations of the kernel
- D^{bg} degree of the polynomial used to model the background variations
- N_x number of stamps along x-axis
- N_y number of stamps along y-axis
- \mathbf{S}_k width of the convolution kernel
- \mathbf{S}_s width of the region used for fitting the background
- N_c minimum number of counts in the middle of a stamp
- N_{min} minimum value of a pixel to be included in the fit
- N_{sat} maximum value of a pixel to be included in the fit

how does the subtracted image look like? what is causing the different residuals? any real variability between the two images?

Exercise 3: Deep learning for the automated spectral classification of supernovae

https://github.com/daniel-muthukrishna/DASH Muthukrishna et al. 2019, ApJ, 885, 18

Supernova types

Supernova types

Pastorello+ 2007

Supernova spectral classification by identifying characteristic spectral lines (and elements)

Mouse hovers at WL: 7011.32 (rest),7291.77 (observed)

Automatic supernova classification based on a deep learning approach

Muthukrishna et al. 2019, ApJ, 885, 18

Exercise 3: practical work

Experiment with a deep learning based method for supernova classification and present your findings in the report; discuss the pros and cons of the use of machine learning in supernova classification

In the new WISeREP v2, everyone can contribute and upload data (spectra / photometry / related-files) directly, either via the Report webpage or via the Bulk APIs.

Please contact us if you encounter any problems or if you have any questions.

No. of Spectra:

select some observed supernova spectra from the WISeREP archive, download the spectra, make notes of their types and redshifts

Object sea	arch					
Object search Spe	ectra search					
Obj. Name		Public	Min spec. no.			
0	Exact match	All ~]		
RA	DEC	Search radius				
		arcsec ¥				
Contributing group/s	Туре	Type Family				
None	SN I-rapid	SN				
ASAS-SN	SN Ia	Star				
Asiago	SN Ia-91bg-like	Synthetic				
Redshift Range	Added within the last					
to	0 Days ~					
	h					

select some observed supernova spectra from the WISeREP archive, download the spectra, make notes of their types and redshifts

Showing results 1 to 50 out of 11031

1 <u>2 3 4 5 6 7</u> ... > >>

<u>ID</u> ▲	IAU Name	Internal / Alt. Name/s	Obj. Reps	Cool X-Re	ords lefs <u>RA</u>	A	DEC	<u>Type</u>	<u>Redshift</u>	<u>Host</u> <u>Redshift</u>	<u>Host Name</u>	Contributing Group/s	<u>Public</u>	Obj. Spectra		Obj. Phases	Light Curves	Related Files	Created by
<u>20836</u>	<u>SN 2022lax</u>	ZTF22aaldrem	2	Coor X-ref	ords 14:	4:24:50.686	-08:45:10.60	SN la	0.058			TNS	Y	1	۰				TNS_Bot1
<u>20842</u>	SN 2022kwf	ATLAS22ozp, ZTF22aalfezf	3	Coor X-ref	ords efs 17:	7:36:17.968	+40:08:16.10	SN la	0.0387500003			TNS	Y	1	•				TNS_Bot1
<u>20825</u>	<u>SN 2022kpy</u>	ZTF22aalaajn	2	Coor X-ref	ords 00:	0:36:32.281	+19:23:54.61	SN la	0.062			TNS	Y	1	•				TNS_Bot1
<u>20818</u>	SN 2022kpr	ATLAS220gy	2	Coor X-ref	ords efs 16:	6:26:57.750	+51:07:42.95	SN la	0.08			TNS	Y	1	•				TNS_Bot1
<u>20828</u>	SN 2022knm	ZTF22aakkmri. ATLAS22orp, PS22ekk	4	Coor X-ref	ords efs 13:	3:25:04.348	-24:39:24.80	SN la	0.04			TNS	Y	1	0				TNS_Bot1
<u>20821</u>	<u>SN 2022kmp</u>	ZTF22aakpwgf. ATLAS22okr	3	Coor X-ref	ords efs 11:	1:50:24.455	+22:42:48.92	SN la	0.067			TNS	Y	1	•				TNS_Bot1
<u>20839</u>	SN 2022klm	ATLAS220ht	2	Coor X-ref	ords efs 17:	7:33:57.181	+50:33:11.43	SN la	0.07			TNS	Y	1	•				TNS_Bot1
<u>20806</u>	<u>SN 2022klj</u>	ZTF22aajykxi, PS22eiq	3	Coor X-ref	ords efs 16:	6:18:24.720	+12:28:13.86	SN la	0.085			ePESSTO+, TNS	Y	1	•				WIS_Bot1
<u>20786</u>	SN 2022klh	ATLAS220ff	2	Coor X-ref	ords efs 15:	5:21:19.265	+34:17:47.13	SN la	0.031492			TNS	Y	1	۰				
20816	SN 2022klg	ATLAS22ofd	2	Coor	13:	3:52:43.849	+59:16:42.91	SN la	0.03			TNS	Y	1	•				TN: Privacy - T

select some observed supernova spectra from the WISeREP archive, download the spectra, make notes of their types and redshifts

Mouse hovers at WL: 8720.73 (rest),9069.56 (observed)

Showing results 1 to 1 out of 1

		DASH		↑ _ □ ×
Select Spectrum	Best Matches			
Select SN File Browse	Best Matches			Best Match Host Type SN Type Age Range Redshift: 0.0
Priors				Softmax: Rel. ProD. Warning Labels
Known Redshift	Analyse selection			
Classify Host	Plot Template la-norm	▼ -20 to -18	• No Host	Host Fraction 0%
Min wave 3000	Template Name	< >	Redshift 0	
Max wave 10000				
Calculate rlap scores	0 0.2	0.4	0.6	0.8 1
	1 0.2	0.4	0.6	0.8
Fit with priors Cancel 100% Quit	0.8 0.6 0.4 0.2 0 0 0 0 0.2	0.4		0.8
<pre>not3@course2021:~\$ astrodash- (astrodash) not3@course2021:~ Pandas module not installed. This can be up to 10x slower 2022-05-30 19:47:58.320799: W ader.cc:64] Could not load dy rt.so.11.0: cannot open share 2022-05-30 19:47:58.320835: I Ignore above cudart dlerror WARNING:tensorflow:From /opt/ ges/tensorflow/python/compat/ tensorflow.python.ops.variabl ure version. Instructions for updating: non-resource variables are no</pre>	<pre>not3@course2021: ~ not3@course2021: ~ 80x15 setup -\$ astrodash DASH will use numpy to load spect . / tensorflow/stream_executor/pla /namic library 'libcudart.so.11. ed object file: No such file or / tensorflow/stream_executor/cuc if you do not have a GPU set up /miniconda3/envs/astrodash/lib/p /v2_compat.py:107: disable_resou .e_scope) is deprecated and will ot supported in the long term</pre>	ectral files instead. atform/default/dso_lo .0'; dlerror: libcuda directory da/cudart_stub.cc:29] o on your machine. bython3.10/site-packa urce_variables (from b be removed in a fut		

make experiments with DASH for the spectra that you downloaded, do the spectral types agree with previous classifications, are priors needed?

